engineering/modules/robotics/robotics.h

416 lines
15 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
******************************************************************************
* @file robotics.cpp/h
* @brief Robotic toolbox on STM32. STM32机器人学库
* @author Spoon Guan
* @ref [1] SJTU ME385-2, Robotics, Y.Ding
* [2] Bruno Siciliano, et al., Robotics: Modelling, Planning and
* Control, Springer, 2010.
* [3] R.Murry, Z.X.Li, and S.Sastry, A Mathematical Introduction
* to Robotic Manipulation, CRC Press, 1994.
******************************************************************************
* Copyright (c) 2023 Team JiaoLong-SJTU
* All rights reserved.
******************************************************************************
*/
#ifndef ROBOTICS_H
#define ROBOTICS_H
#include "utils.h"
#include "matrix.h"
namespace robotics {
// rotation matrix(R) -> RPY([yaw;pitch;roll])
Matrixf<3, 1> r2rpy(Matrixf<3, 3> R);
// RPY([yaw;pitch;roll]) -> rotation matrix(R)
Matrixf<3, 3> rpy2r(Matrixf<3, 1> rpy);
// rotation matrix(R) -> angle vector([r;θ])
Matrixf<4, 1> r2angvec(Matrixf<3, 3> R);
// angle vector([r;θ]) -> rotation matrix(R)
Matrixf<3, 3> angvec2r(Matrixf<4, 1> angvec);
// rotation matrix(R) -> quaternion, [q0;q1;q2;q3]=[cos(θ/2);rsin(θ/2)]
Matrixf<4, 1> r2quat(Matrixf<3, 3> R);
// quaternion, [q0;q1;q2;q3]=[cos(θ/2);rsin(θ/2)] -> rotation matrix(R)
Matrixf<3, 3> quat2r(Matrixf<4, 1> quat);
// quaternion, [q0;q1;q2;q3]=[cos(θ/2);rsin(θ/2)] -> RPY([yaw;pitch;roll])
Matrixf<3, 1> quat2rpy(Matrixf<4, 1> q);
// RPY([yaw;pitch;roll]) -> quaternion, [q0;q1;q2;q3]=[cos(θ/2);rsin(θ/2)]
Matrixf<4, 1> rpy2quat(Matrixf<3, 1> rpy);
// quaternion, [q0;q1;q2;q3]=[cos(θ/2);rsin(θ/2)] -> angle vector([r;θ])
Matrixf<4, 1> quat2angvec(Matrixf<4, 1> q);
// angle vector([r;θ]) -> quaternion, [q0;q1;q2;q3]=[cos(θ/2);rsin(θ/2)]
Matrixf<4, 1> angvec2quat(Matrixf<4, 1> angvec);
// homogeneous transformation matrix(T) -> rotation matrix(R)
Matrixf<3, 3> t2r(Matrixf<4, 4> T);
// rotation matrix(R) -> homogeneous transformation matrix(T)
Matrixf<4, 4> r2t(Matrixf<3, 3> R);
// homogeneous transformation matrix(T) -> translation vector(p)
Matrixf<3, 1> t2p(Matrixf<4, 4> T);
// translation vector(p) -> homogeneous transformation matrix(T)
Matrixf<4, 4> p2t(Matrixf<3, 1> p);
// rotation matrix(R) & translation vector(p) -> homogeneous transformation
// matrix(T)
Matrixf<4, 4> rp2t(Matrixf<3, 3> R, Matrixf<3, 1> p);
// homogeneous transformation matrix(T) -> RPY([yaw;pitch;roll])
Matrixf<3, 1> t2rpy(Matrixf<4, 4> T);
// inverse of homogeneous transformation matrix(T^-1=[R',-R'P;0,1])
Matrixf<4, 4> invT(Matrixf<4, 4> T);
// RPY([yaw;pitch;roll]) -> homogeneous transformation matrix(T)
Matrixf<4, 4> rpy2t(Matrixf<3, 1> rpy);
// homogeneous transformation matrix(T) -> angle vector([r;θ])
Matrixf<4, 1> t2angvec(Matrixf<4, 4> T);
// angle vector([r;θ]) -> homogeneous transformation matrix(T)
Matrixf<4, 4> angvec2t(Matrixf<4, 1> angvec);
// homogeneous transformation matrix(T) -> quaternion,
// [q0;q1;q2;q3]=[cos(θ/2);rsin(θ/2)]
Matrixf<4, 1> t2quat(Matrixf<4, 4> T);
// quaternion, [q0;q1;q2;q3]=[cos(θ/2);rsin(θ/2)] -> homogeneous transformation
// matrix(T)
Matrixf<4, 4> quat2t(Matrixf<4, 1> quat);
// homogeneous transformation matrix(T) -> twist coordinates vector ([p;rθ])
Matrixf<6, 1> t2twist(Matrixf<4, 4> T);
// twist coordinates vector ([p;rθ]) -> homogeneous transformation matrix(T)
Matrixf<4, 4> twist2t(Matrixf<6, 1> twist);
// joint type: R-revolute joint, P-prismatic joint
typedef enum joint_type {
R = 0,
P = 1,
} Joint_Type_e;
// DenavitHartenberg(DH) method
struct DH_t {
// forward kinematic
Matrixf<4, 4> fkine();
// DH parameter
float theta;
float d;
float a;
float alpha;
Matrixf<4, 4> T;
};
class Link {
public:
Link(){};
Link(float theta, float d, float a, float alpha, Joint_Type_e type = R,
float offset = 0, float qmin = 0, float qmax = 0, float m = 1,
Matrixf<3, 1> rc = matrixf::zeros<3, 1>(),
Matrixf<3, 3> I = matrixf::zeros<3, 3>());
Link(const Link& link);
Link& operator=(Link link);
float qmin() { return qmin_; }
float qmax() { return qmax_; }
Joint_Type_e type() { return type_; }
float m() { return m_; }
Matrixf<3, 1> rc() { return rc_; }
Matrixf<3, 3> I() { return I_; }
Matrixf<4, 4> T(float q); // forward kinematic
public:
// kinematic parameter
DH_t dh_;
float offset_;
// limit(qmin,qmax), no limit if qmin<=qmax
float qmin_;
float qmax_;
// joint type
Joint_Type_e type_;
// dynamic parameter
float m_; // mass
Matrixf<3, 1> rc_; // centroid(link coordinate)
Matrixf<3, 3> I_; // inertia tensor(3*3)
};
template <uint16_t _n = 1>
class Serial_Link {
public:
Serial_Link(Link links[_n]) {
for (int i = 0; i < _n; i++)
links_[i] = links[i];
gravity_ = matrixf::zeros<3, 1>();
gravity_[2][0] = -9.81f;
}
Serial_Link(Link links[_n], Matrixf<3, 1> gravity) {
for (int i = 0; i < _n; i++)
links_[i] = links[i];
gravity_ = gravity;
}
// forward kinematic: T_n^0
// param[in] q: joint variable vector
// param[out] T_n^0
Matrixf<4, 4> fkine(Matrixf<_n, 1> q) {
T_ = matrixf::eye<4, 4>();
for (int iminus1 = 0; iminus1 < _n; iminus1++)
T_ = T_ * links_[iminus1].T(q[iminus1][0]);
return T_;
}
// forward kinematic: T_k^0
// param[in] q: joint variable vector
// param[in] k: joint number
// param[out] T_k^0
Matrixf<4, 4> fkine(Matrixf<_n, 1> q, uint16_t k) {
if (k > _n)
k = _n;
Matrixf<4, 4> T = matrixf::eye<4, 4>();
for (int iminus1 = 0; iminus1 < k; iminus1++)
T = T * links_[iminus1].T(q[iminus1][0]);
return T;
}
// T_k^k-1: homogeneous transformation matrix of link k
// param[in] q: joint variable vector
// param[in] kminus: joint number k, input k-1
// param[out] T_k^k-1
Matrixf<4, 4> T(Matrixf<_n, 1> q, uint16_t kminus1) {
if (kminus1 >= _n)
kminus1 = _n - 1;
return links_[kminus1].T(q[kminus1][0]);
}
// jacobian matrix, J_i = [J_pi;j_oi]
// param[in] q: joint variable vector
// param[out] jacobian matix J_6*n
Matrixf<6, _n> jacob(Matrixf<_n, 1> q) {
Matrixf<3, 1> p_e = t2p(fkine(q)); // p_e
Matrixf<4, 4> T_iminus1 = matrixf::eye<4, 4>(); // T_i-1^0
Matrixf<3, 1> z_iminus1; // z_i-1^0
Matrixf<3, 1> p_iminus1; // p_i-1^0
Matrixf<3, 1> J_pi;
Matrixf<3, 1> J_oi;
for (int iminus1 = 0; iminus1 < _n; iminus1++) {
// revolute joint: J_pi = z_i-1x(p_e-p_i-1), J_oi = z_i-1
if (links_[iminus1].type() == R) {
z_iminus1 = T_iminus1.block<3, 1>(0, 2);
p_iminus1 = t2p(T_iminus1);
T_iminus1 = T_iminus1 * links_[iminus1].T(q[iminus1][0]);
J_pi = vector3f::cross(z_iminus1, p_e - p_iminus1);
J_oi = z_iminus1;
}
// prismatic joint: J_pi = z_i-1, J_oi = 0
else {
z_iminus1 = T_iminus1.block<3, 1>(0, 2);
T_iminus1 = T_iminus1 * links_[iminus1].T(q[iminus1][0]);
J_pi = z_iminus1;
J_oi = matrixf::zeros<3, 1>();
}
J_[0][iminus1] = J_pi[0][0];
J_[1][iminus1] = J_pi[1][0];
J_[2][iminus1] = J_pi[2][0];
J_[3][iminus1] = J_oi[0][0];
J_[4][iminus1] = J_oi[1][0];
J_[5][iminus1] = J_oi[2][0];
}
return J_;
}
// inverse kinematic, numerical solution(Newton method)
// param[in] T: homogeneous transformation matrix of end effector
// param[in] q: initial joint variable vector(q0) for Newton method's
// iteration
// param[in] tol: tolerance of error (norm(error of twist vector))
// param[in] max_iter: maximum iterations, default 30
// param[out] q: joint variable vector
Matrixf<_n, 1> ikine(Matrixf<4, 4> Td,
Matrixf<_n, 1> q = matrixf::zeros<_n, 1>(),
float tol = 1e-4f, uint16_t max_iter = 50) {
Matrixf<4, 4> T;
Matrixf<3, 1> pe, we;
Matrixf<6, 1> err, new_err;
Matrixf<_n, 1> dq;
float step = 1;
for (int i = 0; i < max_iter; i++) {
T = fkine(q);
pe = t2p(Td) - t2p(T);
// angvec(Td*T^-1), transform angular vector(T->Td) in world coordinate
we = t2twist(Td * invT(T)).block<3, 1>(3, 0);
for (int i = 0; i < 3; i++) {
err[i][0] = pe[i][0];
err[i + 3][0] = we[i][0];
}
if (err.norm() < tol)
return q;
// adjust iteration step
Matrixf<6, _n> J = jacob(q);
for (int j = 0; j < 5; j++) {
dq = matrixf::inv(J.trans() * J) * (J.trans() * err) * step;
if (dq[0][0] == INFINITY) // J'*J singular
{
dq = matrixf::inv(J.trans() * J + 0.1f * matrixf::eye<_n, _n>()) *
J.trans() * err * step;
// SVD<6, _n> JTJ_svd(J.trans() * J);
// dq = JTJ_svd.solve(err) * step * 5e-2f;
q += dq;
for (int i = 0; i < _n; i++) {
if (links_[i].type() == R)
q[i][0] = math::loopLimit(q[i][0], -PI, PI);
}
break;
}
T = fkine(q + dq);
pe = t2p(Td) - t2p(T);
we = t2twist(Td * invT(T)).block<3, 1>(3, 0);
for (int i = 0; i < 3; i++) {
new_err[i][0] = pe[i][0];
new_err[i + 3][0] = we[i][0];
}
if (new_err.norm() < err.norm()) {
q += dq;
for (int i = 0; i < _n; i++) {
if (links_[i].type() == robotics::Joint_Type_e::R) {
q[i][0] = math::loopLimit(q[i][0], -PI, PI);
}
}
break;
} else {
step /= 2.0f;
}
}
if (step < 1e-3f)
return q;
}
return q;
}
// (Reserved function) inverse kinematic, analytic solution(geometric method)
Matrixf<_n, 2> (*ikine_analytic)(Matrixf<4, 4> T);
// (Reserved function) check inverse kinematic , analytic solution(geometric method)
// 检查解析解是否存在
bool (*ikine_analytic_check)(Matrixf<4, 4> T);
// inverse dynamic, Newton-Euler method
// param[in] q: joint variable vector
// param[in] qv: dq/dt
// param[in] qa: d^2q/dt^2
// param[in] he: load on end effector [f;μ], default 0
Matrixf<_n, 1> rne(Matrixf<_n, 1> q,
Matrixf<_n, 1> qv = matrixf::zeros<_n, 1>(),
Matrixf<_n, 1> qa = matrixf::zeros<_n, 1>(),
Matrixf<6, 1> he = matrixf::zeros<6, 1>()) {
// forward propagation
// record each links' motion state in matrices
// [ωi] angular velocity
Matrixf<3, _n + 1> w = matrixf::zeros<3, _n + 1>();
// [βi] angular acceleration
Matrixf<3, _n + 1> b = matrixf::zeros<3, _n + 1>();
// [pi] position of joint
Matrixf<3, _n + 1> p = matrixf::zeros<3, _n + 1>();
// [vi] velocity of joint
Matrixf<3, _n + 1> v = matrixf::zeros<3, _n + 1>();
// [ai] acceleration of joint
Matrixf<3, _n + 1> a = matrixf::zeros<3, _n + 1>();
// [aci] acceleration of mass center
Matrixf<3, _n + 1> ac = matrixf::zeros<3, _n + 1>();
// temperary vectors
Matrixf<3, 1> w_i, b_i, p_i, v_i, ai, ac_i;
// i & i-1 coordinate convert to 0 coordinate
Matrixf<4, 4> T_0i = matrixf::eye<4, 4>();
Matrixf<4, 4> T_0iminus1 = matrixf::eye<4, 4>();
Matrixf<3, 3> R_0i = matrixf::eye<3, 3>();
Matrixf<3, 3> R_0iminus1 = matrixf::eye<3, 3>();
// unit vector of z-axis
Matrixf<3, 1> ez = matrixf::zeros<3, 1>();
ez[2][0] = 1;
for (int i = 1; i <= _n; i++) {
T_0i = T_0i * T(q, i - 1); // T_i^0
R_0i = t2r(T_0i); // R_i^0
R_0iminus1 = t2r(T_0iminus1); // R_i-1^0
// ω_i = ω_i-1+qv_i*R_i-1^0*ez
w_i = w.col(i - 1) + qv[i - 1][0] * R_0iminus1 * ez;
// β_i = β_i-1+ω_i-1x(qv_i*R_i-1^0*ez)+qa_i*R_i-1^0*ez
b_i = b.col(i - 1) +
vector3f::cross(w.col(i - 1), qv[i - 1][0] * R_0iminus1 * ez) +
qa[i - 1][0] * R_0iminus1 * ez;
p_i = t2p(T_0i); // p_i = T_i^0(1:3,4)
// v_i = v_i-1+ω_ix(p_i-p_i-1)
v_i = v.col(i - 1) + vector3f::cross(w_i, p_i - p.col(i - 1));
// a_i = a_i-1+β_ix(p_i-p_i-1)+ω_ix(ω_ix(p_i-p_i-1))
ai = a.col(i - 1) + vector3f::cross(b_i, p_i - p.col(i - 1)) +
vector3f::cross(w_i, vector3f::cross(w_i, p_i - p.col(i - 1)));
// ac_i = a_i+β_ix(R_0^i*rc_i^i)+ω_ix(ω_ix(R_0^i*rc_i^i))
ac_i =
ai + vector3f::cross(b_i, R_0i * links_[i - 1].rc()) +
vector3f::cross(w_i, vector3f::cross(w_i, R_0i * links_[i - 1].rc()));
for (int row = 0; row < 3; row++) {
w[row][i] = w_i[row][0];
b[row][i] = b_i[row][0];
p[row][i] = p_i[row][0];
v[row][i] = v_i[row][0];
a[row][i] = ai[row][0];
ac[row][i] = ac_i[row][0];
}
T_0iminus1 = T_0i; // T_i-1^0
}
// backward propagation
// record each links' force
Matrixf<3, _n + 1> f = matrixf::zeros<3, _n + 1>(); // joint force
Matrixf<3, _n + 1> mu = matrixf::zeros<3, _n + 1>(); // joint moment
// temperary vector
Matrixf<3, 1> f_iminus1, mu_iminus1;
// {T,R',P}_i^i-1
Matrixf<4, 4> T_iminus1i;
Matrixf<3, 3> RT_iminus1i;
Matrixf<3, 1> P_iminus1i;
// I_i-1(in 0 coordinate)
Matrixf<3, 3> I_i;
// joint torque
Matrixf<_n, 1> torq;
// load on end effector
for (int row = 0; row < 3; row++) {
f[row][_n] = he.block<3, 1>(0, 0)[row][0];
mu[row][_n] = he.block<3, 1>(3, 0)[row][0];
}
for (int i = _n; i > 0; i--) {
T_iminus1i = T(q, i - 1); // T_i^i-1
P_iminus1i = t2p(T_iminus1i); // P_i^i-1
RT_iminus1i = t2r(T_iminus1i).trans(); // R_i^i-1'
R_0iminus1 = R_0i * RT_iminus1i; // R_i-1^0
// I_i^0 = R_i^0*I_i^i*(R_i^0)'
I_i = R_0i * links_[i - 1].I() * R_0i.trans();
// f_i-1 = f_i+m_i*ac_i-m_i*g
f_iminus1 = f.col(i) + links_[i - 1].m() * ac.col(i) -
links_[i - 1].m() * gravity_;
// μ_i-1 = μ_i+f_ixrc_i-f_i-1xrc_i-1->ci+I_i*b_i+ω_ix(I_i*ω_i)
mu_iminus1 = mu.col(i) +
vector3f::cross(f.col(i), R_0i * links_[i - 1].rc()) -
vector3f::cross(f_iminus1, R_0i * (RT_iminus1i * P_iminus1i +
links_[i - 1].rc())) +
I_i * b.col(i) + vector3f::cross(w.col(i), I_i * w.col(i));
// τ_i = μ_i-1'*(R_i-1^0*ez)
torq[i - 1][0] = (mu_iminus1.trans() * R_0iminus1 * ez)[0][0];
for (int row = 0; row < 3; row++) {
f[row][i - 1] = f_iminus1[row][0];
mu[row][i - 1] = mu_iminus1[row][0];
}
R_0i = R_0iminus1;
}
return torq;
}
private:
Link links_[_n];
Matrixf<3, 1> gravity_;
Matrixf<4, 4> T_;
Matrixf<6, _n> J_;
};
Matrixf<5, 2> my_analytic_ikine(Matrixf<4, 4> T);
bool check_ikine(Matrixf<4, 4> T);
}; // namespace robotics
#endif // ROBOTICS_H