engineering/modules/robotics/robotics.cpp

451 lines
14 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
******************************************************************************
* @file robotics.cpp/h
* @brief Robotic toolbox on STM32. STM32机器人学库
* @author Spoon Guan
* @ref [1] SJTU ME385-2, Robotics, Y.Ding
* [2] Bruno Siciliano, et al., Robotics: Modelling, Planning and
* Control, Springer, 2010.
* [3] R.Murry, Z.X.Li, and S.Sastry, A Mathematical Introduction
* to Robotic Manipulation, CRC Press, 1994.
******************************************************************************
* Copyright (c) 2023 Team JiaoLong-SJTU
* All rights reserved.
******************************************************************************
*/
#include "robotics.h"
Matrixf<3, 1> robotics::r2rpy(Matrixf<3, 3> R) {
float rpy[3] = {
atan2f(R[1][0], R[0][0]), // yaw
atan2f(-R[2][0], sqrtf(R[2][1] * R[2][1] + R[2][2] * R[2][2])), // pitch
atan2f(R[2][1], R[2][2]) // roll
};
return Matrixf<3, 1>(rpy);
}
Matrixf<3, 3> robotics::rpy2r(Matrixf<3, 1> rpy) {
float c[3] = {cosf(rpy[0][0]), cosf(rpy[1][0]), cosf(rpy[2][0])};
float s[3] = {sinf(rpy[0][0]), sinf(rpy[1][0]), sinf(rpy[2][0])};
float R[9] = {
c[0] * c[1], // R11
c[0] * s[1] * s[2] - s[0] * c[2], // R12
c[0] * s[1] * c[2] + s[0] * s[2], // R13
s[0] * c[1], // R21
s[0] * s[1] * s[2] + c[0] * c[2], // R22
s[0] * s[1] * c[2] - c[0] * s[2], // R23
-s[1], // R31
c[1] * s[2], // R32
c[1] * c[2] // R33
};
return Matrixf<3, 3>(R);
}
Matrixf<4, 1> robotics::r2angvec(Matrixf<3, 3> R) {
float theta = acosf(math::limit(0.5f * (R.trace() - 1), -1, 1));
if (theta == 0 || theta == PI) {
float angvec[4] = {
(1 + R[0][0] - R[1][1] - R[2][2]) / 4.0f, // rx=(1+R11-R22-R33)/4
(1 - R[0][0] + R[1][1] - R[2][2]) / 4.0f, // ry=(1-R11+R22-R33)/4
(1 - R[0][0] - R[1][1] + R[2][2]) / 4.0f, // rz=(1-R11-R22+R33)/4
theta // theta
};
return Matrixf<4, 1>(angvec);
}
float angvec[4] = {
(R[2][1] - R[1][2]) / (2.0f * sinf(theta)), // rx=(R32-R23)/2sinθ
(R[0][2] - R[2][0]) / (2.0f * sinf(theta)), // ry=(R13-R31)/2sinθ
(R[1][0] - R[0][1]) / (2.0f * sinf(theta)), // rz=(R21-R12)/2sinθ
theta // theta
};
return Matrixf<4, 1>(angvec);
}
Matrixf<3, 3> robotics::angvec2r(Matrixf<4, 1> angvec) {
float theta = angvec[3][0];
Matrixf<3, 1> r = angvec.block<3, 1>(0, 0);
Matrixf<3, 3> R;
// Rodrigues formula: R=I+ω^sinθ+ω^^2(1-cosθ)
R = matrixf::eye<3, 3>() + vector3f::hat(r) * sinf(theta) +
vector3f::hat(r) * vector3f::hat(r) * (1 - cosf(theta));
return R;
}
Matrixf<4, 1> robotics::r2quat(Matrixf<3, 3> R) {
float q[4] = {
0.5f * sqrtf(math::limit(R.trace(), -1, 1) + 1), // q0=cos(θ/2)
math::sign(R[2][1] - R[1][2]) * 0.5f *
sqrtf(math::limit(R[0][0] - R[1][1] - R[2][2], -1, 1) +
1), // q1=rx*sin(θ/2)
math::sign(R[0][2] - R[2][0]) * 0.5f *
sqrtf(math::limit(-R[0][0] + R[1][1] - R[2][2], -1, 1) +
1), // q2=ry*sin(θ/2)
math::sign(R[1][0] - R[0][1]) * 0.5f *
sqrtf(math::limit(-R[0][0] - R[1][1] + R[2][2], -1, 1) +
1), // q3=rz*sin(θ/2)
};
return (Matrixf<4, 1>(q) / Matrixf<4, 1>(q).norm());
}
Matrixf<3, 3> robotics::quat2r(Matrixf<4, 1> q) {
float R[9] = {
1 - 2.0f * (q[2][0] * q[2][0] + q[3][0] * q[3][0]), // R11
2.0f * (q[1][0] * q[2][0] - q[0][0] * q[3][0]), // R12
2.0f * (q[1][0] * q[3][0] + q[0][0] * q[2][0]), // R13
2.0f * (q[1][0] * q[2][0] + q[0][0] * q[3][0]), // R21
1 - 2.0f * (q[1][0] * q[1][0] + q[3][0] * q[3][0]), // R22
2.0f * (q[2][0] * q[3][0] - q[0][0] * q[1][0]), // R23
2.0f * (q[1][0] * q[3][0] - q[0][0] * q[2][0]), // R31
2.0f * (q[2][0] * q[3][0] + q[0][0] * q[1][0]), // R32
1 - 2.0f * (q[1][0] * q[1][0] + q[2][0] * q[2][0]) // R33
};
return Matrixf<3, 3>(R);
}
Matrixf<3, 1> robotics::quat2rpy(Matrixf<4, 1> q) {
float rpy[3] = {
atan2f(2.0f * (q[1][0] * q[2][0] + q[0][0] * q[3][0]),
1 - 2.0f * (q[2][0] * q[2][0] + q[3][0] * q[3][0])), // yaw
asinf(2.0f * (q[0][0] * q[2][0] - q[1][0] * q[3][0])), // pitch
atan2f(2.0f * (q[2][0] * q[3][0] + q[0][0] * q[1][0]),
1 - 2.0f * (q[1][0] * q[1][0] + q[2][0] * q[2][0])) // rol
};
return Matrixf<3, 1>(rpy);
}
Matrixf<4, 1> robotics::rpy2quat(Matrixf<3, 1> rpy) {
float c[3] = {cosf(0.5f * rpy[0][0]), cosf(0.5f * rpy[1][0]),
cosf(0.5f * rpy[2][0])}; // cos(*/2)
float s[3] = {sinf(0.5f * rpy[0][0]), sinf(0.5f * rpy[1][0]),
sinf(0.5f * rpy[2][0])}; // sin(*/2)
float q[4] = {
c[0] * c[1] * c[2] + s[0] * s[1] * s[2], // q0=cos(θ/2)
c[0] * c[1] * s[2] - s[0] * s[1] * c[2], // q1=rx*sin(θ/2)
c[0] * s[1] * c[2] + s[0] * c[1] * s[2], // q2=ry*sin(θ/2)
s[0] * c[1] * c[2] - c[0] * s[1] * s[2] // q3=rz*sin(θ/2)
};
return (Matrixf<4, 1>(q) / Matrixf<4, 1>(q).norm());
}
Matrixf<4, 1> robotics::quat2angvec(Matrixf<4, 1> q) {
float cosq0;
float theta = 2.0f * acosf(math::limit(q[0][0], -1, 1));
if (theta == 0 || theta == PI) {
float angvec[4] = {0, 0, 0, theta}; // θ=0||PI, return[0;θ]
return Matrixf<4, 1>(angvec);
}
Matrixf<3, 1> vec = q.block<3, 1>(1, 0);
float angvec[4] = {
vec[0][0] / vec.norm(), // rx
vec[1][0] / vec.norm(), // ry
vec[2][0] / vec.norm(), // rz
theta // theta
};
return Matrixf<4, 1>(angvec);
}
Matrixf<4, 1> robotics::angvec2quat(Matrixf<4, 1> angvec) {
float c = cosf(0.5f * angvec[3][0]), s = sinf(0.5f * angvec[3][0]);
float q[4] = {
c, // q0=cos(θ/2)
s * angvec[0][0], // q1=rx*sin(θ/2)
s * angvec[1][0], // q2=ry*sin(θ/2)
s * angvec[2][0] // q3=rz*sin(θ/2)
};
return Matrixf<4, 1>(q) / Matrixf<4, 1>(q).norm();
}
Matrixf<3, 3> robotics::t2r(Matrixf<4, 4> T) {
return T.block<3, 3>(0, 0); // R=T(1:3,1:3)
}
Matrixf<4, 4> robotics::r2t(Matrixf<3, 3> R) {
// T=[R,0;0,1]
float T[16] = {R[0][0], R[0][1], R[0][2], 0, R[1][0], R[1][1], R[1][2], 0,
R[2][0], R[2][1], R[2][2], 0, 0, 0, 0, 1};
return Matrixf<4, 4>(T);
}
Matrixf<3, 1> robotics::t2p(Matrixf<4, 4> T) {
return T.block<3, 1>(0, 3); // p=T(1:3,4)
}
Matrixf<4, 4> robotics::p2t(Matrixf<3, 1> p) {
// T=[I,P;0,1]
float T[16] = {1, 0, 0, p[0][0], 0, 1, 0, p[1][0],
0, 0, 1, p[2][0], 0, 0, 0, 1};
return Matrixf<4, 4>(T);
}
Matrixf<4, 4> robotics::rp2t(Matrixf<3, 3> R, Matrixf<3, 1> p) {
// T=[R,P;0,1]
float T[16] = {R[0][0], R[0][1], R[0][2], p[0][0], R[1][0], R[1][1],
R[1][2], p[1][0], R[2][0], R[2][1], R[2][2], p[2][0],
0, 0, 0, 1};
return Matrixf<4, 4>(T);
}
Matrixf<4, 4> robotics::invT(Matrixf<4, 4> T) {
Matrixf<3, 3> RT = t2r(T).trans();
Matrixf<3, 1> p_ = -1.0f * RT * t2p(T);
float invT[16] = {RT[0][0], RT[0][1], RT[0][2], p_[0][0], RT[1][0], RT[1][1],
RT[1][2], p_[1][0], RT[2][0], RT[2][1], RT[2][2], p_[2][0],
0, 0, 0, 1};
return Matrixf<4, 4>(invT);
}
Matrixf<3, 1> robotics::t2rpy(Matrixf<4, 4> T) {
return r2rpy(t2r(T));
}
Matrixf<4, 4> robotics::rpy2t(Matrixf<3, 1> rpy) {
return r2t(rpy2r(rpy));
}
Matrixf<4, 1> robotics::t2angvec(Matrixf<4, 4> T) {
return r2angvec(t2r(T));
}
Matrixf<4, 4> robotics::angvec2t(Matrixf<4, 1> angvec) {
return r2t(angvec2r(angvec));
}
Matrixf<4, 1> robotics::t2quat(Matrixf<4, 4> T) {
return r2quat(t2r(T));
}
Matrixf<4, 4> robotics::quat2t(Matrixf<4, 1> quat) {
return r2t(quat2r(quat));
}
Matrixf<6, 1> robotics::t2twist(Matrixf<4, 4> T) {
Matrixf<3, 1> p = t2p(T);
Matrixf<4, 1> angvec = t2angvec(T);
Matrixf<3, 1> phi = angvec.block<3, 1>(0, 0) * angvec[3][0];
float twist[6] = {p[0][0], p[1][0], p[2][0], phi[0][0], phi[1][0], phi[2][0]};
return Matrixf<6, 1>(twist);
}
Matrixf<4, 4> robotics::twist2t(Matrixf<6, 1> twist) {
Matrixf<3, 1> p = twist.block<3, 1>(0, 0);
float theta = twist.block<3, 1>(3, 0).norm();
float angvec[4] = {0, 0, 0, theta};
if (theta != 0) {
angvec[0] = twist[3][0] / theta;
angvec[1] = twist[4][0] / theta;
angvec[2] = twist[5][0] / theta;
}
return rp2t(angvec2r(angvec), p);
}
Matrixf<4, 4> robotics::DH_t::fkine() {
float ct = cosf(theta), st = sinf(theta); // cosθ, sinθ
float ca = cosf(alpha), sa = sinf(alpha); // cosα, sinα
// T =
// | cθ -sθcα sθsα acθ |
// | sθ cθcα -cθsα asθ |
// | 0 sα cα d |
// | 0 0 0 1 |
T[0][0] = ct;
T[0][1] = -st * ca;
T[0][2] = st * sa;
T[0][3] = a * ct;
T[1][0] = st;
T[1][1] = ct * ca;
T[1][2] = -ct * sa;
T[1][3] = a * st;
T[2][0] = 0;
T[2][1] = sa;
T[2][2] = ca;
T[2][3] = d;
T[3][0] = 0;
T[3][1] = 0;
T[3][2] = 0;
T[3][3] = 1;
return T;
}
robotics::Link::Link(float theta,
float d,
float a,
float alpha,
robotics::Joint_Type_e type,
float offset,
float qmin,
float qmax,
float m,
Matrixf<3, 1> rc,
Matrixf<3, 3> I) {
dh_.theta = theta;
dh_.d = d;
dh_.alpha = alpha;
dh_.a = a;
type_ = type;
offset_ = offset;
qmin_ = qmin;
qmax_ = qmax;
m_ = m;
rc_ = rc;
I_ = I;
}
robotics::Link::Link(const Link& link) {
dh_.theta = link.dh_.theta;
dh_.d = link.dh_.d;
dh_.alpha = link.dh_.alpha;
dh_.a = link.dh_.a;
type_ = link.type_;
offset_ = link.offset_;
qmin_ = link.qmin_;
qmax_ = link.qmax_;
m_ = link.m_;
rc_ = link.rc_;
I_ = link.I_;
}
robotics::Link& robotics::Link::operator=(Link link) {
dh_.theta = link.dh_.theta;
dh_.d = link.dh_.d;
dh_.alpha = link.dh_.alpha;
dh_.a = link.dh_.a;
type_ = link.type_;
offset_ = link.offset_;
qmin_ = link.qmin_;
qmax_ = link.qmax_;
m_ = link.m_;
rc_ = link.rc_;
I_ = link.I_;
return *this;
}
Matrixf<4, 4> robotics::Link::T(float q) {
if (type_ == R) {
if (qmin_ >= qmax_)
dh_.theta = q + offset_;
else
dh_.theta = math::limit(q + offset_, qmin_, qmax_);
} else {
if (qmin_ >= qmax_)
dh_.d = q + offset_;
else
dh_.d = math::limit(q + offset_, qmin_, qmax_);
}
return dh_.fkine();
}
bool robotics::check_ikine(Matrixf<4, 4> T)
{
const float L1=0.151,L3=0.350,L4=0.139;
Matrixf<3,1> Pe = T.block<3, 1>(0, 3); // p=T(1:3,4)
Matrixf<3,1> Ze = T.block<3, 1>(0, 2); // z=T(1:3,3)
//求解W点球形腕
Matrixf<3,1> Pw = Pe-L4*Ze;
float length = Pw.norm();
//满足构成三角形条件theta2才有解
if(length <= (L1+L3) && length >= (L3-L1))
return true;
else
return false;
}
Matrixf<5,2> robotics::my_analytic_ikine(Matrixf<4, 4> T)
{
const float L1=0.151,L3=0.350,L4=0.139;
Matrixf<3,1> Pe = T.block<3, 1>(0, 3); // p=T(1:3,4)
Matrixf<3,1> Ze = T.block<3, 1>(0, 2); // z=T(1:3,3)
//求解W点球形腕
Matrixf<3,1> Pw = Pe-L4*Ze;
//求解theta1
float theta_1 = atan2(Pw[1][0],Pw[0][0]);
//求解theta2
//L1^2 + L3^2 - 2*L1*L3*cos_th2 = norm(Pw)^2
float cos_th2 = (L1*L1 + L3*L3 - Pw.norm()*Pw.norm())/(2*L1*L3);
float theta_2 = acosf(cos_th2) ; //关节2 有PI/2的offset
//计算T02
DH_t l1_dh = {
.theta = theta_1,
.d = L1,
.a = 0,
.alpha = PI/2,
};
DH_t l2_dh = {
.theta = theta_2,
.d = 0,
.a = 0,
.alpha = PI/2,
};
Matrixf<4,4> T02 = l1_dh.fkine() * l2_dh.fkine();
Matrixf<4,4> T25 = invT(T02) * T;
//腕关节(theta_5)朝上 >0
float theta_30 = atan2(T25[1][2],T25[0][2]);
float theta_40 = atan2(sqrtf(T25[0][2]*T25[0][2] + T25[1][2]*T25[1][2]),T25[2][2]);
float theta_50 = atan2(T25[2][1],-T25[2][0]);
//腕关节(theta_5)朝下 <0
float theta_31 = atan2(-T25[1][2],-T25[0][2]);
float theta_41 = atan2(-sqrtf(T25[0][2]*T25[0][2] + T25[1][2]*T25[1][2]),T25[2][2]);
float theta_51 = atan2(-T25[2][1],T25[2][0]);
//
// float q_data[10] = {theta_1,theta_2 - PI/2,theta_30,theta_40,theta_50,
// theta_1,theta_2 - PI/2,theta_31,theta_41,theta_51};//关节2 有PI/2的offset
//
float q_data[10]={ theta_1,theta_1 ,
theta_2 - PI/2 , theta_2 - PI/2,
theta_30,theta_31 ,
theta_40 , theta_41 ,
theta_50,theta_51 };
Matrixf<5,2> ik_q(q_data);
return ik_q;
}
//末端标准正交球形腕求解
Matrixf<3,2> robotics::spherical_wrist_ikine(const Matrixf<3,3>& R,float theta_1,float theta_2)
{
const float L1=0.151,L3=0.350,L4=0;
//计算T02
DH_t l1_dh = {
.theta = theta_1,
.d = L1,
.a = 0,
.alpha = PI/2,
};
DH_t l2_dh = {
.theta = theta_2,
.d = 0,
.a = L3,
.alpha = PI/2,
};
Matrixf<4,4> T02 = l1_dh.fkine() * l2_dh.fkine();
Matrixf<4,4> T = r2t(R); //末端位置仅由前两轴决定 计算球形手腕时无需考虑位置
Matrixf<4,4> T25 = invT(T02) * T;
//腕关节(theta_5)朝上 >0
float theta_30 = atan2(T25[1][2],T25[0][2]);
float theta_40 = atan2(sqrtf(T25[0][2]*T25[0][2] + T25[1][2]*T25[1][2]),T25[2][2]);
float theta_50 = atan2(T25[2][1],-T25[2][0]);
//腕关节(theta_5)朝下 <0
float theta_31 = atan2(-T25[1][2],-T25[0][2]);
float theta_41 = atan2(-sqrtf(T25[0][2]*T25[0][2] + T25[1][2]*T25[1][2]),T25[2][2]);
float theta_51 = atan2(-T25[2][1],T25[2][0]);
float q_data[6]={ theta_30,theta_31,
theta_40,theta_41,
theta_50,theta_51 };
Matrixf<3,2> ik_q(q_data);
return ik_q;
}