#include "dmmotor.h" #include "memory.h" #include "general_def.h" #include "user_lib.h" #include "cmsis_os.h" #include "string.h" #include "daemon.h" #include "stdlib.h" #include "bsp_log.h" static uint8_t idx; static DMMotorInstance *dm_motor_instance[DM_MOTOR_CNT]; static osThreadId dm_task_handle[DM_MOTOR_CNT]; /* 两个用于将uint值和float值进行映射的函数,在设定发送值和解析反馈值时使用 */ static uint16_t float_to_uint(float x, float x_min, float x_max, uint8_t bits) { float span = x_max - x_min; float offset = x_min; return (uint16_t)((x - offset) * ((float)((1 << bits) - 1)) / span); } static float uint_to_float(int x_int, float x_min, float x_max, int bits) { float span = x_max - x_min; float offset = x_min; return ((float)x_int) * span / ((float)((1 << bits) - 1)) + offset; } void DMMotorSetMode(DMMotor_Mode_e cmd, DMMotorInstance *motor) { memset(motor->motor_can_instance->tx_buff, 0xff, 7); // 发送电机指令的时候前面7bytes都是0xff motor->motor_can_instance->tx_buff[7] = (uint8_t)cmd; // 最后一位是命令id CANTransmit(motor->motor_can_instance, 1); } static void DMMotorDecode(CANInstance *motor_can) { uint16_t tmp; // 用于暂存解析值,稍后转换成float数据,避免多次创建临时变量 uint8_t *rxbuff = motor_can->rx_buff; DMMotorInstance *motor = (DMMotorInstance *)motor_can->id; DM_Motor_Measure_s *measure = &(motor->measure); // 将can实例中保存的id转换成电机实例的指针 DaemonReload(motor->motor_daemon); measure->last_position = measure->position; tmp = (uint16_t)((rxbuff[1] << 8) | rxbuff[2]); measure->position = uint_to_float(tmp, DM_P_MIN, DM_P_MAX, 16); measure->angle_single_round = RAD_2_DEGREE * (measure->position+3.141593); tmp = (uint16_t)((rxbuff[3] << 4) | rxbuff[4] >> 4); measure->velocity = uint_to_float(tmp, DM_V_MIN, DM_V_MAX, 12); tmp = (uint16_t)(((rxbuff[4] & 0x0f) << 8) | rxbuff[5]); measure->torque = uint_to_float(tmp, DM_T_MIN, DM_T_MAX, 12); measure->T_Mos = (float)rxbuff[6]; measure->T_Rotor = (float)rxbuff[7]; // 多圈角度计算,前提是假设两次采样间电机转过的角度小于180°,自己画个图就清楚计算过程了 if (measure->position - measure->last_position > PI) //3.1425926 measure->total_round--; else if (measure->position - measure->last_position < -PI) measure->total_round++; measure->total_angle = measure->total_round * (DM_P_MAX * DEGREE_2_RAD) + measure->angle_single_round; } static void DMMotorLostCallback(void *motor_ptr) { DMMotorInstance *motor = (DMMotorInstance *)motor_ptr; uint16_t can_bus = motor->motor_can_instance->can_handle == &hcan1 ? 1 : 2; LOGWARNING("[dm_motor] Motor lost, can bus [%d] , id [%d]", can_bus, motor->motor_can_instance->tx_id); } void DMMotorCaliEncoder(DMMotorInstance *motor) { DMMotorSetMode(DM_CMD_ZERO_POSITION, motor); DWT_Delay(0.1); } DMMotorInstance *DMMotorInit(Motor_Init_Config_s *config) { DMMotorInstance *motor = (DMMotorInstance *)malloc(sizeof(DMMotorInstance)); memset(motor, 0, sizeof(DMMotorInstance)); config->can_init_config.rx_id = config->can_init_config.rx_id; config->can_init_config.tx_id = config->can_init_config.tx_id; motor->motor_settings = config->controller_setting_init_config; PIDInit(&motor->motor_controller.current_PID, &config->controller_param_init_config.current_PID); PIDInit(&motor->motor_controller.speed_PID, &config->controller_param_init_config.speed_PID); PIDInit(&motor->motor_controller.angle_PID, &config->controller_param_init_config.angle_PID); motor->motor_controller.other_angle_feedback_ptr = config->controller_param_init_config.other_angle_feedback_ptr; motor->motor_controller.other_speed_feedback_ptr = config->controller_param_init_config.other_speed_feedback_ptr; motor->motor_controller.current_feedforward_ptr = config->controller_param_init_config.current_feedforward_ptr; motor->motor_controller.speed_feedforward_ptr = config->controller_param_init_config.speed_feedforward_ptr; config->can_init_config.can_module_callback = DMMotorDecode; config->can_init_config.id = motor; motor->motor_can_instance = CANRegister(&config->can_init_config); Daemon_Init_Config_s conf = { .callback = DMMotorLostCallback, .owner_id = motor, .reload_count = 10, }; motor->motor_daemon = DaemonRegister(&conf); DMMotorEnable(motor); DMMotorSetMode(DM_CMD_MOTOR_MODE, motor); DWT_Delay(0.1f); dm_motor_instance[idx++] = motor; return motor; } void DMMotorSetRef(DMMotorInstance *motor, float ref) { motor->motor_controller.pid_ref = ref; } void DMMotorEnable(DMMotorInstance *motor) { motor->stop_flag = MOTOR_ENALBED; } void DMMotorStop(DMMotorInstance *motor)//不使用使能模式是因为需要收到反馈 { motor->stop_flag = MOTOR_STOP; } void DMMotorOuterLoop(DMMotorInstance *motor, Closeloop_Type_e type) { motor->motor_settings.outer_loop_type = type; } //还得使用力矩控制 void DMMotorTask(void const *argument) { float pid_ref, set, pid_measure; DMMotorInstance *motor = (DMMotorInstance *)argument; Motor_Controller_s *motor_controller; // 电机控制器 DM_Motor_Measure_s *measure = &motor->measure; motor_controller = &motor->motor_controller; Motor_Control_Setting_s *setting = &motor->motor_settings; //CANInstance *motor_can = motor->motor_can_instance; //uint16_t tmp; DMMotor_Send_s motor_send_mailbox; while (1) { pid_ref = motor->motor_controller.pid_ref;//保存设定值 if (setting->motor_reverse_flag == MOTOR_DIRECTION_REVERSE) pid_ref *= -1; // pid_ref会顺次通过被启用的闭环充当数据的载体 // 计算位置环,只有启用位置环且外层闭环为位置时会计算速度环输出 if ((setting->close_loop_type & ANGLE_LOOP) && setting->outer_loop_type == ANGLE_LOOP) { if (setting->angle_feedback_source == OTHER_FEED) pid_measure = *motor_controller->other_angle_feedback_ptr; else pid_measure = measure->position; // MOTOR_FEED,对total angle闭环,防止在边界处出现突跃 // 更新pid_ref进入下一个环 pid_ref = PIDCalculate(&motor_controller->angle_PID, pid_measure, pid_ref); } // 计算速度环,(外层闭环为速度或位置)且(启用速度环)时会计算速度环 if ((setting->close_loop_type & SPEED_LOOP) && (setting->outer_loop_type & (ANGLE_LOOP | SPEED_LOOP))) { if (setting->feedforward_flag & SPEED_FEEDFORWARD) pid_ref += *motor_controller->speed_feedforward_ptr; if (setting->speed_feedback_source == OTHER_FEED) pid_measure = *motor_controller->other_speed_feedback_ptr; else // MOTOR_FEED pid_measure = measure->velocity; // 更新pid_ref进入下一个环 pid_ref = PIDCalculate(&motor_controller->speed_PID, pid_measure, pid_ref); } // 电流环前馈 if (setting->feedforward_flag & CURRENT_FEEDFORWARD) pid_ref += *motor_controller->current_feedforward_ptr; if (setting->feedback_reverse_flag == FEEDBACK_DIRECTION_REVERSE) pid_ref *= -1; set = pid_ref; if (motor->stop_flag == MOTOR_STOP) set = 0; LIMIT_MIN_MAX(set, DM_T_MIN, DM_T_MAX); motor_send_mailbox.position_des = float_to_uint(0, DM_P_MIN, DM_P_MAX, 16); motor_send_mailbox.velocity_des = float_to_uint(0, DM_V_MIN, DM_V_MAX, 12); motor_send_mailbox.torque_des = float_to_uint(set, DM_T_MIN, DM_T_MAX, 12); motor_send_mailbox.Kp = 0;//只使用力矩控制无需kpkd参数 motor_send_mailbox.Kd = 0;//只使用力矩控制无需kpkd参数 motor->motor_can_instance->tx_buff[0] = (uint8_t)(motor_send_mailbox.position_des >> 8); motor->motor_can_instance->tx_buff[1] = (uint8_t)(motor_send_mailbox.position_des); motor->motor_can_instance->tx_buff[2] = (uint8_t)(motor_send_mailbox.velocity_des >> 4); motor->motor_can_instance->tx_buff[3] = (uint8_t)(((motor_send_mailbox.velocity_des & 0xF) << 4) | (motor_send_mailbox.Kp >> 8)); motor->motor_can_instance->tx_buff[4] = (uint8_t)(motor_send_mailbox.Kp); motor->motor_can_instance->tx_buff[5] = (uint8_t)(motor_send_mailbox.Kd >> 4); motor->motor_can_instance->tx_buff[6] = (uint8_t)(((motor_send_mailbox.Kd & 0xF) << 4) | (motor_send_mailbox.torque_des >> 8)); motor->motor_can_instance->tx_buff[7] = (uint8_t)(motor_send_mailbox.torque_des); CANTransmit(motor->motor_can_instance, 1); //osDelay(2); osDelay(5); } } void DMMotorControlInit() { char dm_task_name[5] = "dm"; // 遍历所有电机实例,创建任务 if (!idx) return; for (size_t i = 0; i < idx; i++) { char dm_id_buff[2] = {0}; __itoa(i, dm_id_buff, 10); strcat(dm_task_name, dm_id_buff); osThreadDef(dm_task_name, DMMotorTask, osPriorityNormal, 0, 128); dm_task_handle[i] = osThreadCreate(osThread(dm_task_name), dm_motor_instance[i]); } }