engineering/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc_ex.c

1113 lines
40 KiB
C
Raw Normal View History

2024-04-25 23:12:31 +08:00
/**
******************************************************************************
* @file stm32f4xx_hal_adc_ex.c
* @author MCD Application Team
* @brief This file provides firmware functions to manage the following
* functionalities of the ADC extension peripheral:
* + Extended features functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit():
(##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE()
(##) ADC pins configuration
(+++) Enable the clock for the ADC GPIOs using the following function:
__HAL_RCC_GPIOx_CLK_ENABLE()
(+++) Configure these ADC pins in analog mode using HAL_GPIO_Init()
(##) In case of using interrupts (e.g. HAL_ADC_Start_IT())
(+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority()
(+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ()
(+++) In ADC IRQ handler, call HAL_ADC_IRQHandler()
(##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA())
(+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE()
(+++) Configure and enable two DMA streams stream for managing data
transfer from peripheral to memory (output stream)
(+++) Associate the initialized DMA handle to the ADC DMA handle
using __HAL_LINKDMA()
(+++) Configure the priority and enable the NVIC for the transfer complete
interrupt on the two DMA Streams. The output stream should have higher
priority than the input stream.
(#) Configure the ADC Prescaler, conversion resolution and data alignment
using the HAL_ADC_Init() function.
(#) Configure the ADC Injected channels group features, use HAL_ADC_Init()
and HAL_ADC_ConfigChannel() functions.
(#) Three operation modes are available within this driver:
*** Polling mode IO operation ***
=================================
[..]
(+) Start the ADC peripheral using HAL_ADCEx_InjectedStart()
(+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage
user can specify the value of timeout according to his end application
(+) To read the ADC converted values, use the HAL_ADCEx_InjectedGetValue() function.
(+) Stop the ADC peripheral using HAL_ADCEx_InjectedStop()
*** Interrupt mode IO operation ***
===================================
[..]
(+) Start the ADC peripheral using HAL_ADCEx_InjectedStart_IT()
(+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine
(+) At ADC end of conversion HAL_ADCEx_InjectedConvCpltCallback() function is executed and user can
add his own code by customization of function pointer HAL_ADCEx_InjectedConvCpltCallback
(+) In case of ADC Error, HAL_ADCEx_InjectedErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_ADCEx_InjectedErrorCallback
(+) Stop the ADC peripheral using HAL_ADCEx_InjectedStop_IT()
*** Multi mode ADCs Regular channels configuration ***
======================================================
[..]
(+) Select the Multi mode ADC regular channels features (dual or triple mode)
and configure the DMA mode using HAL_ADCEx_MultiModeConfigChannel() functions.
(+) Start the ADC peripheral using HAL_ADCEx_MultiModeStart_DMA(), at this stage the user specify the length
of data to be transferred at each end of conversion
(+) Read the ADCs converted values using the HAL_ADCEx_MultiModeGetValue() function.
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup ADCEx ADCEx
* @brief ADC Extended driver modules
* @{
*/
#ifdef HAL_ADC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @addtogroup ADCEx_Private_Functions
* @{
*/
/* Private function prototypes -----------------------------------------------*/
static void ADC_MultiModeDMAConvCplt(DMA_HandleTypeDef *hdma);
static void ADC_MultiModeDMAError(DMA_HandleTypeDef *hdma);
static void ADC_MultiModeDMAHalfConvCplt(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup ADCEx_Exported_Functions ADC Exported Functions
* @{
*/
/** @defgroup ADCEx_Exported_Functions_Group1 Extended features functions
* @brief Extended features functions
*
@verbatim
===============================================================================
##### Extended features functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Start conversion of injected channel.
(+) Stop conversion of injected channel.
(+) Start multimode and enable DMA transfer.
(+) Stop multimode and disable DMA transfer.
(+) Get result of injected channel conversion.
(+) Get result of multimode conversion.
(+) Configure injected channels.
(+) Configure multimode.
@endverbatim
* @{
*/
/**
* @brief Enables the selected ADC software start conversion of the injected channels.
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef* hadc)
{
__IO uint32_t counter = 0U;
uint32_t tmp1 = 0U, tmp2 = 0U;
ADC_Common_TypeDef *tmpADC_Common;
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
/* Check if ADC peripheral is disabled in order to enable it and wait during
Tstab time the ADC's stabilization */
if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
{
/* Enable the Peripheral */
__HAL_ADC_ENABLE(hadc);
/* Delay for ADC stabilization time */
/* Compute number of CPU cycles to wait for */
counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
while(counter != 0U)
{
counter--;
}
}
/* Start conversion if ADC is effectively enabled */
if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
{
/* Set ADC state */
/* - Clear state bitfield related to injected group conversion results */
/* - Set state bitfield related to injected operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
HAL_ADC_STATE_INJ_BUSY);
/* Check if a regular conversion is ongoing */
/* Note: On this device, there is no ADC error code fields related to */
/* conversions on group injected only. In case of conversion on */
/* going on group regular, no error code is reset. */
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
{
/* Reset ADC all error code fields */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Clear injected group conversion flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
/* Pointer to the common control register to which is belonging hadc */
/* (Depending on STM32F4 product, there may be up to 3 ADC and 1 common */
/* control register) */
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
/* Check if Multimode enabled */
if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
{
tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN);
tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO);
if(tmp1 && tmp2)
{
/* Enable the selected ADC software conversion for injected group */
hadc->Instance->CR2 |= ADC_CR2_JSWSTART;
}
}
else
{
tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN);
tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO);
if((hadc->Instance == ADC1) && tmp1 && tmp2)
{
/* Enable the selected ADC software conversion for injected group */
hadc->Instance->CR2 |= ADC_CR2_JSWSTART;
}
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC IP internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Enables the interrupt and starts ADC conversion of injected channels.
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
*
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef* hadc)
{
__IO uint32_t counter = 0U;
uint32_t tmp1 = 0U, tmp2 = 0U;
ADC_Common_TypeDef *tmpADC_Common;
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
/* Check if ADC peripheral is disabled in order to enable it and wait during
Tstab time the ADC's stabilization */
if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
{
/* Enable the Peripheral */
__HAL_ADC_ENABLE(hadc);
/* Delay for ADC stabilization time */
/* Compute number of CPU cycles to wait for */
counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
while(counter != 0U)
{
counter--;
}
}
/* Start conversion if ADC is effectively enabled */
if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
{
/* Set ADC state */
/* - Clear state bitfield related to injected group conversion results */
/* - Set state bitfield related to injected operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
HAL_ADC_STATE_INJ_BUSY);
/* Check if a regular conversion is ongoing */
/* Note: On this device, there is no ADC error code fields related to */
/* conversions on group injected only. In case of conversion on */
/* going on group regular, no error code is reset. */
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
{
/* Reset ADC all error code fields */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Clear injected group conversion flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
/* Enable end of conversion interrupt for injected channels */
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
/* Pointer to the common control register to which is belonging hadc */
/* (Depending on STM32F4 product, there may be up to 3 ADC and 1 common */
/* control register) */
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
/* Check if Multimode enabled */
if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
{
tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN);
tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO);
if(tmp1 && tmp2)
{
/* Enable the selected ADC software conversion for injected group */
hadc->Instance->CR2 |= ADC_CR2_JSWSTART;
}
}
else
{
tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN);
tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO);
if((hadc->Instance == ADC1) && tmp1 && tmp2)
{
/* Enable the selected ADC software conversion for injected group */
hadc->Instance->CR2 |= ADC_CR2_JSWSTART;
}
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC IP internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stop conversion of injected channels. Disable ADC peripheral if
* no regular conversion is on going.
* @note If ADC must be disabled and if conversion is on going on
* regular group, function HAL_ADC_Stop must be used to stop both
* injected and regular groups, and disable the ADC.
* @note If injected group mode auto-injection is enabled,
* function HAL_ADC_Stop must be used.
* @note In case of auto-injection mode, HAL_ADC_Stop must be used.
* @param hadc ADC handle
* @retval None
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion and disable ADC peripheral */
/* Conditioned to: */
/* - No conversion on the other group (regular group) is intended to */
/* continue (injected and regular groups stop conversion and ADC disable */
/* are common) */
/* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
if(((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) &&
HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) )
{
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
__HAL_ADC_DISABLE(hadc);
/* Check if ADC is effectively disabled */
if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Poll for injected conversion complete
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @param Timeout Timeout value in millisecond.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
{
uint32_t tickstart = 0U;
/* Get tick */
tickstart = HAL_GetTick();
/* Check End of conversion flag */
while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC)))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* New check to avoid false timeout detection in case of preemption */
if(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC)))
{
hadc->State= HAL_ADC_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_TIMEOUT;
}
}
}
}
/* Clear injected group conversion flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JSTRT | ADC_FLAG_JEOC);
/* Update ADC state machine */
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
/* Determine whether any further conversion upcoming on group injected */
/* by external trigger, continuous mode or scan sequence on going. */
/* Note: On STM32F4, there is no independent flag of end of sequence. */
/* The test of scan sequence on going is done either with scan */
/* sequence disabled or with end of conversion flag set to */
/* of end of sequence. */
if(ADC_IS_SOFTWARE_START_INJECTED(hadc) &&
(HAL_IS_BIT_CLR(hadc->Instance->JSQR, ADC_JSQR_JL) ||
HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) &&
(HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
(hadc->Init.ContinuousConvMode == DISABLE) ) ) )
{
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
/* Return ADC state */
return HAL_OK;
}
/**
* @brief Stop conversion of injected channels, disable interruption of
* end-of-conversion. Disable ADC peripheral if no regular conversion
* is on going.
* @note If ADC must be disabled and if conversion is on going on
* regular group, function HAL_ADC_Stop must be used to stop both
* injected and regular groups, and disable the ADC.
* @note If injected group mode auto-injection is enabled,
* function HAL_ADC_Stop must be used.
* @param hadc ADC handle
* @retval None
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion and disable ADC peripheral */
/* Conditioned to: */
/* - No conversion on the other group (regular group) is intended to */
/* continue (injected and regular groups stop conversion and ADC disable */
/* are common) */
/* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
if(((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) &&
HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) )
{
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
__HAL_ADC_DISABLE(hadc);
/* Check if ADC is effectively disabled */
if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
{
/* Disable ADC end of conversion interrupt for injected channels */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Gets the converted value from data register of injected channel.
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @param InjectedRank the ADC injected rank.
* This parameter can be one of the following values:
* @arg ADC_INJECTED_RANK_1: Injected Channel1 selected
* @arg ADC_INJECTED_RANK_2: Injected Channel2 selected
* @arg ADC_INJECTED_RANK_3: Injected Channel3 selected
* @arg ADC_INJECTED_RANK_4: Injected Channel4 selected
* @retval None
*/
uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef* hadc, uint32_t InjectedRank)
{
__IO uint32_t tmp = 0U;
/* Check the parameters */
assert_param(IS_ADC_INJECTED_RANK(InjectedRank));
/* Clear injected group conversion flag to have similar behaviour as */
/* regular group: reading data register also clears end of conversion flag. */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
/* Return the selected ADC converted value */
switch(InjectedRank)
{
case ADC_INJECTED_RANK_4:
{
tmp = hadc->Instance->JDR4;
}
break;
case ADC_INJECTED_RANK_3:
{
tmp = hadc->Instance->JDR3;
}
break;
case ADC_INJECTED_RANK_2:
{
tmp = hadc->Instance->JDR2;
}
break;
case ADC_INJECTED_RANK_1:
{
tmp = hadc->Instance->JDR1;
}
break;
default:
break;
}
return tmp;
}
/**
* @brief Enables ADC DMA request after last transfer (Multi-ADC mode) and enables ADC peripheral
*
* @note Caution: This function must be used only with the ADC master.
*
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @param pData Pointer to buffer in which transferred from ADC peripheral to memory will be stored.
* @param Length The length of data to be transferred from ADC peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
{
__IO uint32_t counter = 0U;
ADC_Common_TypeDef *tmpADC_Common;
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
/* Process locked */
__HAL_LOCK(hadc);
/* Check if ADC peripheral is disabled in order to enable it and wait during
Tstab time the ADC's stabilization */
if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
{
/* Enable the Peripheral */
__HAL_ADC_ENABLE(hadc);
/* Delay for temperature sensor stabilization time */
/* Compute number of CPU cycles to wait for */
counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
while(counter != 0U)
{
counter--;
}
}
/* Start conversion if ADC is effectively enabled */
if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
{
/* Set ADC state */
/* - Clear state bitfield related to regular group conversion results */
/* - Set state bitfield related to regular group operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
HAL_ADC_STATE_REG_BUSY);
/* If conversions on group regular are also triggering group injected, */
/* update ADC state. */
if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
{
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
}
/* State machine update: Check if an injected conversion is ongoing */
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
{
/* Reset ADC error code fields related to conversions on group regular */
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
}
else
{
/* Reset ADC all error code fields */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Set the DMA transfer complete callback */
hadc->DMA_Handle->XferCpltCallback = ADC_MultiModeDMAConvCplt;
/* Set the DMA half transfer complete callback */
hadc->DMA_Handle->XferHalfCpltCallback = ADC_MultiModeDMAHalfConvCplt;
/* Set the DMA error callback */
hadc->DMA_Handle->XferErrorCallback = ADC_MultiModeDMAError ;
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
/* start (in case of SW start): */
/* Clear regular group conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
/* Enable ADC overrun interrupt */
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
/* Pointer to the common control register to which is belonging hadc */
/* (Depending on STM32F4 product, there may be up to 3 ADC and 1 common */
/* control register) */
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
if (hadc->Init.DMAContinuousRequests != DISABLE)
{
/* Enable the selected ADC DMA request after last transfer */
tmpADC_Common->CCR |= ADC_CCR_DDS;
}
else
{
/* Disable the selected ADC EOC rising on each regular channel conversion */
tmpADC_Common->CCR &= ~ADC_CCR_DDS;
}
/* Enable the DMA Stream */
HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&tmpADC_Common->CDR, (uint32_t)pData, Length);
/* if no external trigger present enable software conversion of regular channels */
if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)
{
/* Enable the selected ADC software conversion for regular group */
hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC IP internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Disables ADC DMA (multi-ADC mode) and disables ADC peripheral
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
ADC_Common_TypeDef *tmpADC_Common;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
__HAL_ADC_DISABLE(hadc);
/* Pointer to the common control register to which is belonging hadc */
/* (Depending on STM32F4 product, there may be up to 3 ADC and 1 common */
/* control register) */
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
/* Check if ADC is effectively disabled */
if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
{
/* Disable the selected ADC DMA mode for multimode */
tmpADC_Common->CCR &= ~ADC_CCR_DDS;
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
/* DMA transfer is on going) */
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
/* Disable ADC overrun interrupt */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Returns the last ADC1, ADC2 and ADC3 regular conversions results
* data in the selected multi mode.
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @retval The converted data value.
*/
uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef* hadc)
{
ADC_Common_TypeDef *tmpADC_Common;
/* Pointer to the common control register to which is belonging hadc */
/* (Depending on STM32F4 product, there may be up to 3 ADC and 1 common */
/* control register) */
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
/* Return the multi mode conversion value */
return tmpADC_Common->CDR;
}
/**
* @brief Injected conversion complete callback in non blocking mode
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @retval None
*/
__weak void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_ADC_InjectedConvCpltCallback could be implemented in the user file
*/
}
/**
* @brief Configures for the selected ADC injected channel its corresponding
* rank in the sequencer and its sample time.
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @param sConfigInjected ADC configuration structure for injected channel.
* @retval None
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef* hadc, ADC_InjectionConfTypeDef* sConfigInjected)
{
#ifdef USE_FULL_ASSERT
uint32_t tmp = 0U;
#endif /* USE_FULL_ASSERT */
ADC_Common_TypeDef *tmpADC_Common;
/* Check the parameters */
assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel));
assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank));
assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime));
assert_param(IS_ADC_EXT_INJEC_TRIG(sConfigInjected->ExternalTrigInjecConv));
assert_param(IS_ADC_INJECTED_LENGTH(sConfigInjected->InjectedNbrOfConversion));
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv));
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode));
#ifdef USE_FULL_ASSERT
tmp = ADC_GET_RESOLUTION(hadc);
assert_param(IS_ADC_RANGE(tmp, sConfigInjected->InjectedOffset));
#endif /* USE_FULL_ASSERT */
if(sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START)
{
assert_param(IS_ADC_EXT_INJEC_TRIG_EDGE(sConfigInjected->ExternalTrigInjecConvEdge));
}
/* Process locked */
__HAL_LOCK(hadc);
/* if ADC_Channel_10 ... ADC_Channel_18 is selected */
if (sConfigInjected->InjectedChannel > ADC_CHANNEL_9)
{
/* Clear the old sample time */
hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfigInjected->InjectedChannel);
/* Set the new sample time */
hadc->Instance->SMPR1 |= ADC_SMPR1(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel);
}
else /* ADC_Channel include in ADC_Channel_[0..9] */
{
/* Clear the old sample time */
hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfigInjected->InjectedChannel);
/* Set the new sample time */
hadc->Instance->SMPR2 |= ADC_SMPR2(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel);
}
/*---------------------------- ADCx JSQR Configuration -----------------*/
hadc->Instance->JSQR &= ~(ADC_JSQR_JL);
hadc->Instance->JSQR |= ADC_SQR1(sConfigInjected->InjectedNbrOfConversion);
/* Rank configuration */
/* Clear the old SQx bits for the selected rank */
hadc->Instance->JSQR &= ~ADC_JSQR(ADC_JSQR_JSQ1, sConfigInjected->InjectedRank,sConfigInjected->InjectedNbrOfConversion);
/* Set the SQx bits for the selected rank */
hadc->Instance->JSQR |= ADC_JSQR(sConfigInjected->InjectedChannel, sConfigInjected->InjectedRank,sConfigInjected->InjectedNbrOfConversion);
/* Enable external trigger if trigger selection is different of software */
/* start. */
/* Note: This configuration keeps the hardware feature of parameter */
/* ExternalTrigConvEdge "trigger edge none" equivalent to */
/* software start. */
if(sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START)
{
/* Select external trigger to start conversion */
hadc->Instance->CR2 &= ~(ADC_CR2_JEXTSEL);
hadc->Instance->CR2 |= sConfigInjected->ExternalTrigInjecConv;
/* Select external trigger polarity */
hadc->Instance->CR2 &= ~(ADC_CR2_JEXTEN);
hadc->Instance->CR2 |= sConfigInjected->ExternalTrigInjecConvEdge;
}
else
{
/* Reset the external trigger */
hadc->Instance->CR2 &= ~(ADC_CR2_JEXTSEL);
hadc->Instance->CR2 &= ~(ADC_CR2_JEXTEN);
}
if (sConfigInjected->AutoInjectedConv != DISABLE)
{
/* Enable the selected ADC automatic injected group conversion */
hadc->Instance->CR1 |= ADC_CR1_JAUTO;
}
else
{
/* Disable the selected ADC automatic injected group conversion */
hadc->Instance->CR1 &= ~(ADC_CR1_JAUTO);
}
if (sConfigInjected->InjectedDiscontinuousConvMode != DISABLE)
{
/* Enable the selected ADC injected discontinuous mode */
hadc->Instance->CR1 |= ADC_CR1_JDISCEN;
}
else
{
/* Disable the selected ADC injected discontinuous mode */
hadc->Instance->CR1 &= ~(ADC_CR1_JDISCEN);
}
switch(sConfigInjected->InjectedRank)
{
case 1U:
/* Set injected channel 1 offset */
hadc->Instance->JOFR1 &= ~(ADC_JOFR1_JOFFSET1);
hadc->Instance->JOFR1 |= sConfigInjected->InjectedOffset;
break;
case 2U:
/* Set injected channel 2 offset */
hadc->Instance->JOFR2 &= ~(ADC_JOFR2_JOFFSET2);
hadc->Instance->JOFR2 |= sConfigInjected->InjectedOffset;
break;
case 3U:
/* Set injected channel 3 offset */
hadc->Instance->JOFR3 &= ~(ADC_JOFR3_JOFFSET3);
hadc->Instance->JOFR3 |= sConfigInjected->InjectedOffset;
break;
default:
/* Set injected channel 4 offset */
hadc->Instance->JOFR4 &= ~(ADC_JOFR4_JOFFSET4);
hadc->Instance->JOFR4 |= sConfigInjected->InjectedOffset;
break;
}
/* Pointer to the common control register to which is belonging hadc */
/* (Depending on STM32F4 product, there may be up to 3 ADC and 1 common */
/* control register) */
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
/* if ADC1 Channel_18 is selected enable VBAT Channel */
if ((hadc->Instance == ADC1) && (sConfigInjected->InjectedChannel == ADC_CHANNEL_VBAT))
{
/* Enable the VBAT channel*/
tmpADC_Common->CCR |= ADC_CCR_VBATE;
}
/* if ADC1 Channel_16 or Channel_17 is selected enable TSVREFE Channel(Temperature sensor and VREFINT) */
if ((hadc->Instance == ADC1) && ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) || (sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT)))
{
/* Enable the TSVREFE channel*/
tmpADC_Common->CCR |= ADC_CCR_TSVREFE;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return HAL_OK;
}
/**
* @brief Configures the ADC multi-mode
* @param hadc pointer to a ADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @param multimode pointer to an ADC_MultiModeTypeDef structure that contains
* the configuration information for multimode.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef* hadc, ADC_MultiModeTypeDef* multimode)
{
ADC_Common_TypeDef *tmpADC_Common;
/* Check the parameters */
assert_param(IS_ADC_MODE(multimode->Mode));
assert_param(IS_ADC_DMA_ACCESS_MODE(multimode->DMAAccessMode));
assert_param(IS_ADC_SAMPLING_DELAY(multimode->TwoSamplingDelay));
/* Process locked */
__HAL_LOCK(hadc);
/* Pointer to the common control register to which is belonging hadc */
/* (Depending on STM32F4 product, there may be up to 3 ADC and 1 common */
/* control register) */
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
/* Set ADC mode */
tmpADC_Common->CCR &= ~(ADC_CCR_MULTI);
tmpADC_Common->CCR |= multimode->Mode;
/* Set the ADC DMA access mode */
tmpADC_Common->CCR &= ~(ADC_CCR_DMA);
tmpADC_Common->CCR |= multimode->DMAAccessMode;
/* Set delay between two sampling phases */
tmpADC_Common->CCR &= ~(ADC_CCR_DELAY);
tmpADC_Common->CCR |= multimode->TwoSamplingDelay;
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/**
* @brief DMA transfer complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void ADC_MultiModeDMAConvCplt(DMA_HandleTypeDef *hdma)
{
/* Retrieve ADC handle corresponding to current DMA handle */
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Update state machine on conversion status if not in error state */
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
{
/* Update ADC state machine */
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
/* Determine whether any further conversion upcoming on group regular */
/* by external trigger, continuous mode or scan sequence on going. */
/* Note: On STM32F4, there is no independent flag of end of sequence. */
/* The test of scan sequence on going is done either with scan */
/* sequence disabled or with end of conversion flag set to */
/* of end of sequence. */
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
(hadc->Init.ContinuousConvMode == DISABLE) &&
(HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) )
{
/* Disable ADC end of single conversion interrupt on group regular */
/* Note: Overrun interrupt was enabled with EOC interrupt in */
/* HAL_ADC_Start_IT(), but is not disabled here because can be used */
/* by overrun IRQ process below. */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
/* Conversion complete callback */
HAL_ADC_ConvCpltCallback(hadc);
}
else
{
/* Call DMA error callback */
hadc->DMA_Handle->XferErrorCallback(hdma);
}
}
/**
* @brief DMA half transfer complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void ADC_MultiModeDMAHalfConvCplt(DMA_HandleTypeDef *hdma)
{
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Conversion complete callback */
HAL_ADC_ConvHalfCpltCallback(hadc);
}
/**
* @brief DMA error callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void ADC_MultiModeDMAError(DMA_HandleTypeDef *hdma)
{
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
hadc->State= HAL_ADC_STATE_ERROR_DMA;
/* Set ADC error code to DMA error */
hadc->ErrorCode |= HAL_ADC_ERROR_DMA;
HAL_ADC_ErrorCallback(hadc);
}
/**
* @}
*/
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/