dajing/application/chassis/chassis.c

369 lines
15 KiB
C
Raw Normal View History

2024-05-26 21:02:35 +08:00
/**
* @file chassis.c
* @author NeoZeng neozng1@hnu.edu.cn
* @brief ,robot_cmd的控制命令并根据命令进行运动学解算,
* ,,x正方向;y正方向
*
* @version 0.1
* @date 2022-12-04
*
* @copyright Copyright (c) 2022
*
*/
#include "chassis.h"
#include "robot_def.h"
#include "dji_motor.h"
#include "super_cap.h"
#include "message_center.h"
#include "referee_task.h"
#include "general_def.h"
#include "bsp_dwt.h"
#include "referee_UI.h"
#include "arm_math.h"
#include "user_lib.h"
#include "vofa.h"
/* 根据robot_def.h中的macro自动计算的参数 */
#define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f) // 半轴距
#define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f) // 半轮距
#define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI) // 轮子周长
#define P_MAX 50.0f//功率控制 单位W
/* 底盘应用包含的模块和信息存储,底盘是单例模式,因此不需要为底盘建立单独的结构体 */
#ifdef CHASSIS_BOARD // 如果是底盘板,使用板载IMU获取底盘转动角速度
#include "can_comm.h"
#include "ins_task.h"
static CANCommInstance *chasiss_can_comm; // 双板通信CAN comm
attitude_t *Chassis_IMU_data;
#endif // CHASSIS_BOARD
#ifdef ONE_BOARD
static Publisher_t *chassis_pub; // 用于发布底盘的数据
static Subscriber_t *chassis_sub; // 用于订阅底盘的控制命令
#endif // !ONE_BOARD
static Chassis_Ctrl_Cmd_s chassis_cmd_recv; // 底盘接收到的控制命令
static Chassis_Upload_Data_s chassis_feedback_data; // 底盘回传的反馈数据
static Chassis_Ctrl_Cmd_s Chassis_Power_Mx;
const static float CHASSIS_ACCEL_X_NUM=0.1f;
const static float CHASSIS_ACCEL_Y_NUM=0.1f;
// 超级电容
SuperCapInstance *cap; // 超级电容全局
static uint16_t last_chassis_power_limit=0;//超级电容更新
static DJIMotorInstance *motor_lf, *motor_rf, *motor_lb, *motor_rb; // left right forward back
/* 用于自旋变速策略的时间变量 */
// static float t;
/* 私有函数计算的中介变量,设为静态避免参数传递的开销 */
static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘
static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅
first_order_filter_type_t vx_filter;
first_order_filter_type_t vy_filter;
static float P_cmd;
void ChassisInit() {
// 四个轮子的参数一样,改tx_id和反转标志位即可
Motor_Init_Config_s chassis_motor_config = {
.can_init_config.can_handle = &hcan1,
.controller_param_init_config = {
.speed_PID = {
.Kp = 5.0f,
.Ki = 0.01f,
.Kd = 0.002f,
.IntegralLimit = 3000,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.MaxOut = 30000,
},
.current_PID = {
.Kp = 0.0f,
.Ki = 0.0f,
.Kd = 0.0f,
.IntegralLimit = 3000,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.MaxOut = 15000,
},
},
.controller_setting_init_config = {
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
.outer_loop_type = SPEED_LOOP,
.close_loop_type = SPEED_LOOP, // CURRENT_LOOP,
.power_limit_flag = POWER_LIMIT_ON,
},
.motor_type = M3508,
};
// @todo: 当前还没有设置电机的正反转,仍然需要手动添加reference的正负号,需要电机module的支持,待修改.
// 四个轮子pid分开
//右前
chassis_motor_config.can_init_config.tx_id = 1;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
motor_rf = DJIMotorInit(&chassis_motor_config);
//左前
chassis_motor_config.can_init_config.tx_id = 2;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
motor_lf = DJIMotorInit(&chassis_motor_config);
//左后
chassis_motor_config.can_init_config.tx_id = 3;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
motor_lb = DJIMotorInit(&chassis_motor_config);
//右后
chassis_motor_config.can_init_config.tx_id = 4;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
motor_rb = DJIMotorInit(&chassis_motor_config);
//超级电容
SuperCap_Init_Config_s cap_conf = {
.can_config = {
.can_handle = &hcan1,
.tx_id = 0x210,
.rx_id = 0x211,
},
.buffer_config_pid = {
.Kp = 1.0f,
.Ki = 0,
.Kd = 0,
.MaxOut = 300,
},
};
cap = SuperCapInit(&cap_conf); // 超级电容初始化
//用一阶滤波代替斜波函数生成 //增大更能刹住
first_order_filter_init(&vx_filter, 0.007f, &CHASSIS_ACCEL_X_NUM);
first_order_filter_init(&vy_filter, 0.007f, &CHASSIS_ACCEL_Y_NUM);
// 发布订阅初始化,如果为双板,则需要can comm来传递消息
#ifdef CHASSIS_BOARD
Chassis_IMU_data = INS_Init(); // 底盘IMU初始化
CANComm_Init_Config_s comm_conf = {
.can_config = {
.can_handle = &hcan2,
.tx_id = 0x311,
.rx_id = 0x312,
},
.recv_data_len = sizeof(Chassis_Ctrl_Cmd_s),
.send_data_len = sizeof(Chassis_Upload_Data_s),
};
chasiss_can_comm = CANCommInit(&comm_conf); // can comm初始化
#endif // CHASSIS_BOARD
#ifdef ONE_BOARD // 单板控制整车,则通过pubsub来传递消息
chassis_sub = SubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
chassis_pub = PubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
#endif // ONE_BOARD
}
#define LF_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define RF_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define LB_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define RB_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
/**
* @brief ,
* ,
*/
//全向轮解算
static void OmniCalculate() {
vt_rf = -(HALF_TRACK_WIDTH + HALF_WHEEL_BASE) * chassis_cmd_recv.wz + chassis_vx - chassis_vy;
vt_rb = -(HALF_TRACK_WIDTH + HALF_WHEEL_BASE) * chassis_cmd_recv.wz - chassis_vx - chassis_vy;
vt_lb = -(HALF_TRACK_WIDTH + HALF_WHEEL_BASE) * chassis_cmd_recv.wz - chassis_vx + chassis_vy;
vt_lf = -(HALF_TRACK_WIDTH + HALF_WHEEL_BASE) * chassis_cmd_recv.wz + chassis_vx + chassis_vy;
vt_rf /= (WHEEL_BASE * 1.414f);
vt_rb /= (WHEEL_BASE * 1.414f);
vt_lb /= (WHEEL_BASE * 1.414f);
vt_lf /= (WHEEL_BASE * 1.414f);
}
static const float motor_power_K[3] = {1.6301e-6f,5.7501e-7f,2.5863e-7f};
float input;
float P_max = 0;
///依据3508电机功率模型预测电机输出功率
static float EstimatePower(DJIMotorInstance* chassis_motor)
{
float I_cmd = chassis_motor->motor_controller.current_PID.Output;
float w = chassis_motor->measure.speed_aps /6 ;//aps to rpm
float power = motor_power_K[0] * I_cmd * w + motor_power_K[1]*w*w + motor_power_K[2]*I_cmd*I_cmd;
return power;
}
/**
* @brief
*
*/
static void LimitChassisOutput()
{
// float Plimit = 1.0f;
P_cmd = motor_rf->motor_controller.motor_power_predict +
motor_rb->motor_controller.motor_power_predict +
motor_lb->motor_controller.motor_power_predict +
motor_lf->motor_controller.motor_power_predict + 3.6f;
// if(chassis_cmd_recv.buffer_energy<50&&chassis_cmd_recv.buffer_energy>=40) Plimit=0.9f;
// else if(chassis_cmd_recv.buffer_energy<40&&chassis_cmd_recv.buffer_energy>=35) Plimit=0.75f;
// else if(chassis_cmd_recv.buffer_energy<35&&chassis_cmd_recv.buffer_energy>=30) Plimit=0.5f;
// else if(chassis_cmd_recv.buffer_energy<30&&chassis_cmd_recv.buffer_energy>=20) Plimit=0.25f;
// else if(chassis_cmd_recv.buffer_energy<20&&chassis_cmd_recv.buffer_energy>=10) Plimit=0.125f;
// else if(chassis_cmd_recv.buffer_energy<10&&chassis_cmd_recv.buffer_energy>=0) Plimit=0.05f;
// else if(chassis_cmd_recv.buffer_energy==60) Plimit=1.0f;
if (cap->cap_msg.cap_vol>1800)
{
P_max = input + chassis_cmd_recv.buffer_supercap ;
}
else
{
P_max = input;
}
float K = P_max / P_cmd;
motor_rf->motor_controller.motor_power_scale = K;
motor_rb->motor_controller.motor_power_scale = K;
motor_lf->motor_controller.motor_power_scale = K;
motor_lb->motor_controller.motor_power_scale = K;
{
DJIMotorSetRef(motor_lf, vt_lf);
DJIMotorSetRef(motor_rf, vt_rf);
DJIMotorSetRef(motor_lb, vt_lb);
DJIMotorSetRef(motor_rb, vt_rb);
}
}
/**
* @brief
*
*
*/
static void SuperCapSetUpdate()
{
PIDCalculate(&cap->buffer_pid, chassis_cmd_recv.buffer_energy,15);//对缓冲功率进行闭环
input = chassis_cmd_recv.chassis_power_limit - cap->buffer_pid.Output;
LIMIT_MIN_MAX(input, 30, 130);
SuperCapSetPower(cap,input);
}
/**
* @brief ,,
* ,IMU的数据
*
*/
static void EstimateSpeed() {
// 根据电机速度和陀螺仪的角速度进行解算,还可以利用加速度计判断是否打滑(如果有)
// chassis_feedback_data.vx vy wz =
// ...
}
static chassis_mode_e last_chassis_mode;
static float rotate_speed = 70000;
/* 机器人底盘控制核心任务 */
void ChassisTask() {
// 后续增加没收到消息的处理(双板的情况)
// 获取新的控制信息
#ifdef ONE_BOARD
SubGetMessage(chassis_sub, &chassis_cmd_recv);
#endif
#ifdef CHASSIS_BOARD
chassis_cmd_recv = *(Chassis_Ctrl_Cmd_s *)CANCommGet(chasiss_can_comm);
#endif // CHASSIS_BOARD
if (chassis_cmd_recv.chassis_mode == CHASSIS_ZERO_FORCE) { // 如果出现重要模块离线或遥控器设置为急停,让电机停止
DJIMotorStop(motor_lf);
DJIMotorStop(motor_rf);
DJIMotorStop(motor_lb);
DJIMotorStop(motor_rb);
} else { // 正常工作
DJIMotorEnable(motor_lf);
DJIMotorEnable(motor_rf);
DJIMotorEnable(motor_lb);
DJIMotorEnable(motor_rb);
}
// 根据控制模式设定旋转速度
switch (chassis_cmd_recv.chassis_mode) {
case CHASSIS_NO_FOLLOW: // 底盘不旋转,但维持全向机动,一般用于调整云台姿态
chassis_cmd_recv.wz = 0;
break;
case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出
chassis_cmd_recv.wz = 40.0f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle);
LIMIT_MIN_MAX(chassis_cmd_recv.wz,-35000,35000);
break;
case CHASSIS_SIDEWAYS: // 侧向,不单独设置pid,以误差角度平方为速度输出
chassis_cmd_recv.wz = 20.0f * (chassis_cmd_recv.offset_angle - 45)* abs(chassis_cmd_recv.offset_angle - 45);
LIMIT_MIN_MAX(chassis_cmd_recv.wz,-35000,35000);
break;
case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
if(last_chassis_mode != CHASSIS_ROTATE){
rotate_speed = -rotate_speed;
}
chassis_cmd_recv.wz = rotate_speed;
break;
default:
break;
}
last_chassis_mode = chassis_cmd_recv.chassis_mode;
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
static float sin_theta, cos_theta;
cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
//一阶低通滤波计算
first_order_filter_cali(&vx_filter, chassis_cmd_recv.vx);
first_order_filter_cali(&vy_filter, chassis_cmd_recv.vy);
chassis_cmd_recv.vx = vx_filter.out;
chassis_cmd_recv.vy = vy_filter.out;
chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta;
chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta;
// chassis_vx = (1.0f - 0.30f) * chassis_vx + 0.30f * (chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta);
// chassis_vy = (1.0f - 0.30f) * chassis_vy + 0.30f * (chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta);
// 根据控制模式进行正运动学解算,计算底盘输出
//MecanumCalculate();
OmniCalculate();
////对缓冲功率进行闭环
SuperCapSetUpdate();
// 根据裁判系统的反馈数据和电容数据对输出限幅并设定闭环参考值
LimitChassisOutput();
// float vofa_send_data[2];
// vofa_send_data[0] = motor_lb->motor_controller.speed_PID.Ref;
// vofa_send_data[1] = motor_lb->motor_controller.speed_PID.Measure;
// vofa_justfloat_output(vofa_send_data, 8, &huart1);
// 根据电机的反馈速度和IMU(如果有)计算真实速度
EstimateSpeed();
//todo: 裁判系统信息移植到消息中心发送
// 获取裁判系统数据 建议将裁判系统与底盘分离,所以此处数据应使用消息中心发送
// 发送敌方方颜色id
//chassis_feedback_data.enemy_color = !referee_data->referee_id.Robot_Color;
// 当前只做了17mm热量的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况
//chassis_feedback_data.bullet_speed = referee_data->GameRobotState.shooter_id1_17mm_speed_limit;
chassis_feedback_data.cap_vol = cap->cap_msg.cap_vol;
// 推送反馈消息
#ifdef ONE_BOARD
PubPushMessage(chassis_pub, (void *) &chassis_feedback_data);
#endif
#ifdef CHASSIS_BOARD
CANCommSend(chasiss_can_comm, (void *)&chassis_feedback_data);
#endif // CHASSIS_BOARD
}