/* * OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees * https://octomap.github.io/ * * Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg * All rights reserved. * License: New BSD * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the University of Freiburg nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef OCTOMATH_VECTOR3_H #define OCTOMATH_VECTOR3_H #include #include namespace octomath { /*! * \brief This class represents a three-dimensional vector * * The three-dimensional vector can be used to represent a * translation in three-dimensional space or to represent the * attitude of an object using Euler angle. */ class Vector3 { public: /*! * \brief Default constructor */ Vector3 () { data[0] = data[1] = data[2] = 0.0; } /*! * \brief Copy constructor * * @param other a vector of dimension 3 */ Vector3 (const Vector3& other) { data[0] = other(0); data[1] = other(1); data[2] = other(2); } /*! * \brief Constructor * * Constructs a three-dimensional vector from * three single values x, y, z or roll, pitch, yaw */ Vector3 (float x, float y, float z) { data[0] = x; data[1] = y; data[2] = z; } /* inline Eigen3::Vector3f getVector3f() const { return Eigen3::Vector3f(data[0], data[1], data[2]) ; } */ /* inline Eigen3::Vector4f& getVector4f() { return data; } */ /* inline Eigen3::Vector4f getVector4f() const { return data; } */ /*! * \brief Assignment operator * * @param other a vector of dimension 3 */ inline Vector3& operator= (const Vector3& other) { data[0] = other(0); data[1] = other(1); data[2] = other(2); return *this; } /*! * \brief Three-dimensional vector (cross) product * * Calculates the tree-dimensional cross product, which * represents the vector orthogonal to the plane defined * by this and other. * @return this x other */ inline Vector3 cross (const Vector3& other) const { //return (data.start<3> ().cross (other.data.start<3> ())); // \note should this be renamed? return Vector3(y()*other.z() - z()*other.y(), z()*other.x() - x()*other.z(), x()*other.y() - y()*other.x()); } /// dot product inline double dot (const Vector3& other) const { return x()*other.x() + y()*other.y() + z()*other.z(); } inline const float& operator() (unsigned int i) const { return data[i]; } inline float& operator() (unsigned int i) { return data[i]; } inline float& x() { return operator()(0); } inline float& y() { return operator()(1); } inline float& z() { return operator()(2); } inline const float& x() const { return operator()(0); } inline const float& y() const { return operator()(1); } inline const float& z() const { return operator()(2); } inline float& roll() { return operator()(0); } inline float& pitch() { return operator()(1); } inline float& yaw() { return operator()(2); } inline const float& roll() const { return operator()(0); } inline const float& pitch() const { return operator()(1); } inline const float& yaw() const { return operator()(2); } inline Vector3 operator- () const { Vector3 result; result(0) = -data[0]; result(1) = -data[1]; result(2) = -data[2]; return result; } inline Vector3 operator+ (const Vector3 &other) const { Vector3 result(*this); result(0) += other(0); result(1) += other(1); result(2) += other(2); return result; } inline Vector3 operator* (float x) const { Vector3 result(*this); result(0) *= x; result(1) *= x; result(2) *= x; return result; } inline Vector3 operator- (const Vector3 &other) const { Vector3 result(*this); result(0) -= other(0); result(1) -= other(1); result(2) -= other(2); return result; } inline void operator+= (const Vector3 &other) { data[0] += other(0); data[1] += other(1); data[2] += other(2); } inline void operator-= (const Vector3& other) { data[0] -= other(0); data[1] -= other(1); data[2] -= other(2); } inline void operator/= (float x) { data[0] /= x; data[1] /= x; data[2] /= x; } inline void operator*= (float x) { data[0] *= x; data[1] *= x; data[2] *= x; } inline bool operator== (const Vector3 &other) const { for (unsigned int i=0; i<3; i++) { if (operator()(i) != other(i)) return false; } return true; } inline bool operator< (const Vector3 &other) const { for (unsigned int i=0; i<3; i++){ if (operator()(i) < other(i)) return true; else if (operator()(i) == other(i)) continue; else return false; } } /// @return length of the vector ("L2 norm") inline double norm () const { return sqrt(norm_sq()); } /// @return squared length ("L2 norm") of the vector inline double norm_sq() const { return (x()*x() + y()*y() + z()*z()); } /// normalizes this vector, so that it has norm=1.0 inline Vector3& normalize () { double len = norm(); if (len > 0) *this /= (float) len; return *this; } /// @return normalized vector, this one remains unchanged inline Vector3 normalized () const { Vector3 result(*this); result.normalize (); return result; } inline double angleTo(const Vector3& other) const { double dot_prod = this->dot(other); double len1 = this->norm(); double len2 = other.norm(); return acos(dot_prod / (len1*len2)); } inline double distance (const Vector3& other) const { double dist_x = x() - other.x(); double dist_y = y() - other.y(); double dist_z = z() - other.z(); return sqrt(dist_x*dist_x + dist_y*dist_y + dist_z*dist_z); } inline double distanceXY (const Vector3& other) const { double dist_x = x() - other.x(); double dist_y = y() - other.y(); return sqrt(dist_x*dist_x + dist_y*dist_y); } Vector3& rotate_IP (double roll, double pitch, double yaw); // void read (unsigned char * src, unsigned int size); std::istream& read(std::istream &s); std::ostream& write(std::ostream &s) const; std::istream& readBinary(std::istream &s); std::ostream& writeBinary(std::ostream &s) const; protected: float data[3]; }; //! user friendly output in format (x y z) std::ostream& operator<<(std::ostream& out, octomath::Vector3 const& v); } #endif