/* * OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees * https://octomap.github.io/ * * Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg * All rights reserved. * License: New BSD * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the University of Freiburg nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef OCTOMATH_QUATERNION_H #define OCTOMATH_QUATERNION_H #include "Vector3.h" #include #include namespace octomath { /*! * \brief This class represents a Quaternion. * * The Unit Quaternion is one possible representation of the * attitude of an object in tree-dimensional space. * * This Quaternion class is implemented according to Diebel, * James. Representing Attitude: Euler Angle, Unit Quaternions, and * Rotation Vectors. Stanford University. 2006. - Technical Report. */ class Quaternion { public: /*! * \brief Default constructor * * Constructs the (1,0,0,0) Unit Quaternion * representing the identity rotation. */ inline Quaternion() { u() = 1; x() = 0; y() = 0; z() = 0; } /*! * \brief Copy constructor */ Quaternion(const Quaternion& other); /*! * \brief Constructor * * Constructs a Quaternion from four single * values */ Quaternion(float u, float x, float y, float z); /*! * \brief Constructor * * @param other a vector containing euler angles */ Quaternion(const Vector3& other); /*! * \brief Constructor from Euler angles * * Constructs a Unit Quaternion from Euler angles / Tait Bryan * angles (in radians) according to the 1-2-3 convention. * @param roll phi/roll angle (rotation about x-axis) * @param pitch theta/pitch angle (rotation about y-axis) * @param yaw psi/yaw angle (rotation about z-axis) */ Quaternion(double roll, double pitch, double yaw); //! Constructs a Unit Quaternion from a rotation angle and axis. Quaternion(const Vector3& axis, double angle); /*! * \brief Conversion to Euler angles * * Converts the attitude represented by this to * Euler angles (roll, pitch, yaw). */ Vector3 toEuler() const; void toRotMatrix(std::vector & rot_matrix_3_3) const; inline const float& operator() (unsigned int i) const { return data[i]; } inline float& operator() (unsigned int i) { return data[i]; } float norm () const; Quaternion normalized () const; Quaternion& normalize (); void operator/= (float x); Quaternion& operator= (const Quaternion& other); bool operator== (const Quaternion& other) const; /*! * \brief Quaternion multiplication * * Standard Quaternion multiplication which is not * commutative. * @return this * other */ Quaternion operator* (const Quaternion& other) const; /*! * \brief Quaternion multiplication with extended vector * * @return q * (0, v) */ Quaternion operator* (const Vector3 &v) const; /*! * \brief Quaternion multiplication with extended vector * * @return (0, v) * q */ friend Quaternion operator* (const Vector3 &v, const Quaternion &q); /*! * \brief Inversion * * @return A copy of this Quaterion inverted */ inline Quaternion inv() const { return Quaternion(u(), -x(), -y(), -z()); } /*! * \brief Inversion * * Inverts this Quaternion * @return a reference to this Quaternion */ Quaternion& inv_IP(); /*! * \brief Rotate a vector * * Rotates a vector to the body fixed coordinate * system according to the attitude represented by * this Quaternion. * @param v a vector represented in world coordinates * @return v represented in body-fixed coordinates */ Vector3 rotate(const Vector3 &v) const; inline float& u() { return data[0]; } inline float& x() { return data[1]; } inline float& y() { return data[2]; } inline float& z() { return data[3]; } inline const float& u() const { return data[0]; } inline const float& x() const { return data[1]; } inline const float& y() const { return data[2]; } inline const float& z() const { return data[3]; } std::istream& read(std::istream &s); std::ostream& write(std::ostream &s) const; std::istream& readBinary(std::istream &s); std::ostream& writeBinary(std::ostream &s) const; protected: float data[4]; }; //! user friendly output in format (u x y z) std::ostream& operator<<(std::ostream& s, const Quaternion& q); } #endif