24navigation/install/octomap-distribution/include/octomap/math/Vector3.h

338 lines
8.4 KiB
C
Raw Normal View History

2024-03-08 16:26:56 +08:00
/*
* OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees
* https://octomap.github.io/
*
* Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg
* All rights reserved.
* License: New BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University of Freiburg nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef OCTOMATH_VECTOR3_H
#define OCTOMATH_VECTOR3_H
#include <iostream>
#include <math.h>
namespace octomath {
/*!
* \brief This class represents a three-dimensional vector
*
* The three-dimensional vector can be used to represent a
* translation in three-dimensional space or to represent the
* attitude of an object using Euler angle.
*/
class Vector3 {
public:
/*!
* \brief Default constructor
*/
Vector3 () { data[0] = data[1] = data[2] = 0.0; }
/*!
* \brief Copy constructor
*
* @param other a vector of dimension 3
*/
Vector3 (const Vector3& other) {
data[0] = other(0);
data[1] = other(1);
data[2] = other(2);
}
/*!
* \brief Constructor
*
* Constructs a three-dimensional vector from
* three single values x, y, z or roll, pitch, yaw
*/
Vector3 (float x, float y, float z) {
data[0] = x;
data[1] = y;
data[2] = z;
}
/* inline Eigen3::Vector3f getVector3f() const { return Eigen3::Vector3f(data[0], data[1], data[2]) ; } */
/* inline Eigen3::Vector4f& getVector4f() { return data; } */
/* inline Eigen3::Vector4f getVector4f() const { return data; } */
/*!
* \brief Assignment operator
*
* @param other a vector of dimension 3
*/
inline Vector3& operator= (const Vector3& other) {
data[0] = other(0);
data[1] = other(1);
data[2] = other(2);
return *this;
}
/*!
* \brief Three-dimensional vector (cross) product
*
* Calculates the tree-dimensional cross product, which
* represents the vector orthogonal to the plane defined
* by this and other.
* @return this x other
*/
inline Vector3 cross (const Vector3& other) const
{
//return (data.start<3> ().cross (other.data.start<3> ()));
// \note should this be renamed?
return Vector3(y()*other.z() - z()*other.y(),
z()*other.x() - x()*other.z(),
x()*other.y() - y()*other.x());
}
/// dot product
inline double dot (const Vector3& other) const
{
return x()*other.x() + y()*other.y() + z()*other.z();
}
inline const float& operator() (unsigned int i) const
{
return data[i];
}
inline float& operator() (unsigned int i)
{
return data[i];
}
inline float& x()
{
return operator()(0);
}
inline float& y()
{
return operator()(1);
}
inline float& z()
{
return operator()(2);
}
inline const float& x() const
{
return operator()(0);
}
inline const float& y() const
{
return operator()(1);
}
inline const float& z() const
{
return operator()(2);
}
inline float& roll()
{
return operator()(0);
}
inline float& pitch()
{
return operator()(1);
}
inline float& yaw()
{
return operator()(2);
}
inline const float& roll() const
{
return operator()(0);
}
inline const float& pitch() const
{
return operator()(1);
}
inline const float& yaw() const
{
return operator()(2);
}
inline Vector3 operator- () const
{
Vector3 result;
result(0) = -data[0];
result(1) = -data[1];
result(2) = -data[2];
return result;
}
inline Vector3 operator+ (const Vector3 &other) const
{
Vector3 result(*this);
result(0) += other(0);
result(1) += other(1);
result(2) += other(2);
return result;
}
inline Vector3 operator* (float x) const {
Vector3 result(*this);
result(0) *= x;
result(1) *= x;
result(2) *= x;
return result;
}
inline Vector3 operator- (const Vector3 &other) const
{
Vector3 result(*this);
result(0) -= other(0);
result(1) -= other(1);
result(2) -= other(2);
return result;
}
inline void operator+= (const Vector3 &other)
{
data[0] += other(0);
data[1] += other(1);
data[2] += other(2);
}
inline void operator-= (const Vector3& other) {
data[0] -= other(0);
data[1] -= other(1);
data[2] -= other(2);
}
inline void operator/= (float x) {
data[0] /= x;
data[1] /= x;
data[2] /= x;
}
inline void operator*= (float x) {
data[0] *= x;
data[1] *= x;
data[2] *= x;
}
inline bool operator== (const Vector3 &other) const {
for (unsigned int i=0; i<3; i++) {
if (operator()(i) != other(i))
return false;
}
return true;
}
inline bool operator< (const Vector3 &other) const {
for (unsigned int i=0; i<3; i++){
if (operator()(i) < other(i))
return true;
else if (operator()(i) == other(i))
continue;
else
return false;
}
}
/// @return length of the vector ("L2 norm")
inline double norm () const {
return sqrt(norm_sq());
}
/// @return squared length ("L2 norm") of the vector
inline double norm_sq() const {
return (x()*x() + y()*y() + z()*z());
}
/// normalizes this vector, so that it has norm=1.0
inline Vector3& normalize () {
double len = norm();
if (len > 0)
*this /= (float) len;
return *this;
}
/// @return normalized vector, this one remains unchanged
inline Vector3 normalized () const {
Vector3 result(*this);
result.normalize ();
return result;
}
inline double angleTo(const Vector3& other) const {
double dot_prod = this->dot(other);
double len1 = this->norm();
double len2 = other.norm();
return acos(dot_prod / (len1*len2));
}
inline double distance (const Vector3& other) const {
double dist_x = x() - other.x();
double dist_y = y() - other.y();
double dist_z = z() - other.z();
return sqrt(dist_x*dist_x + dist_y*dist_y + dist_z*dist_z);
}
inline double distanceXY (const Vector3& other) const {
double dist_x = x() - other.x();
double dist_y = y() - other.y();
return sqrt(dist_x*dist_x + dist_y*dist_y);
}
Vector3& rotate_IP (double roll, double pitch, double yaw);
// void read (unsigned char * src, unsigned int size);
std::istream& read(std::istream &s);
std::ostream& write(std::ostream &s) const;
std::istream& readBinary(std::istream &s);
std::ostream& writeBinary(std::ostream &s) const;
protected:
float data[3];
};
//! user friendly output in format (x y z)
std::ostream& operator<<(std::ostream& out, octomath::Vector3 const& v);
}
#endif