24navigation/install/octomap-distribution/include/octomap/math/Quaternion.h

204 lines
6.0 KiB
C
Raw Normal View History

2024-03-08 16:26:56 +08:00
/*
* OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees
* https://octomap.github.io/
*
* Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg
* All rights reserved.
* License: New BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University of Freiburg nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef OCTOMATH_QUATERNION_H
#define OCTOMATH_QUATERNION_H
#include "Vector3.h"
#include <iostream>
#include <vector>
namespace octomath {
/*!
* \brief This class represents a Quaternion.
*
* The Unit Quaternion is one possible representation of the
* attitude of an object in tree-dimensional space.
*
* This Quaternion class is implemented according to Diebel,
* James. Representing Attitude: Euler Angle, Unit Quaternions, and
* Rotation Vectors. Stanford University. 2006. - Technical Report.
*/
class Quaternion {
public:
/*!
* \brief Default constructor
*
* Constructs the (1,0,0,0) Unit Quaternion
* representing the identity rotation.
*/
inline Quaternion() { u() = 1; x() = 0; y() = 0; z() = 0; }
/*!
* \brief Copy constructor
*/
Quaternion(const Quaternion& other);
/*!
* \brief Constructor
*
* Constructs a Quaternion from four single
* values
*/
Quaternion(float u, float x, float y, float z);
/*!
* \brief Constructor
*
* @param other a vector containing euler angles
*/
Quaternion(const Vector3& other);
/*!
* \brief Constructor from Euler angles
*
* Constructs a Unit Quaternion from Euler angles / Tait Bryan
* angles (in radians) according to the 1-2-3 convention.
* @param roll phi/roll angle (rotation about x-axis)
* @param pitch theta/pitch angle (rotation about y-axis)
* @param yaw psi/yaw angle (rotation about z-axis)
*/
Quaternion(double roll, double pitch, double yaw);
//! Constructs a Unit Quaternion from a rotation angle and axis.
Quaternion(const Vector3& axis, double angle);
/*!
* \brief Conversion to Euler angles
*
* Converts the attitude represented by this to
* Euler angles (roll, pitch, yaw).
*/
Vector3 toEuler() const;
void toRotMatrix(std::vector <double>& rot_matrix_3_3) const;
inline const float& operator() (unsigned int i) const { return data[i]; }
inline float& operator() (unsigned int i) { return data[i]; }
float norm () const;
Quaternion normalized () const;
Quaternion& normalize ();
void operator/= (float x);
Quaternion& operator= (const Quaternion& other);
bool operator== (const Quaternion& other) const;
/*!
* \brief Quaternion multiplication
*
* Standard Quaternion multiplication which is not
* commutative.
* @return this * other
*/
Quaternion operator* (const Quaternion& other) const;
/*!
* \brief Quaternion multiplication with extended vector
*
* @return q * (0, v)
*/
Quaternion operator* (const Vector3 &v) const;
/*!
* \brief Quaternion multiplication with extended vector
*
* @return (0, v) * q
*/
friend Quaternion operator* (const Vector3 &v, const Quaternion &q);
/*!
* \brief Inversion
*
* @return A copy of this Quaterion inverted
*/
inline Quaternion inv() const { return Quaternion(u(), -x(), -y(), -z()); }
/*!
* \brief Inversion
*
* Inverts this Quaternion
* @return a reference to this Quaternion
*/
Quaternion& inv_IP();
/*!
* \brief Rotate a vector
*
* Rotates a vector to the body fixed coordinate
* system according to the attitude represented by
* this Quaternion.
* @param v a vector represented in world coordinates
* @return v represented in body-fixed coordinates
*/
Vector3 rotate(const Vector3 &v) const;
inline float& u() { return data[0]; }
inline float& x() { return data[1]; }
inline float& y() { return data[2]; }
inline float& z() { return data[3]; }
inline const float& u() const { return data[0]; }
inline const float& x() const { return data[1]; }
inline const float& y() const { return data[2]; }
inline const float& z() const { return data[3]; }
std::istream& read(std::istream &s);
std::ostream& write(std::ostream &s) const;
std::istream& readBinary(std::istream &s);
std::ostream& writeBinary(std::ostream &s) const;
protected:
float data[4];
};
//! user friendly output in format (u x y z)
std::ostream& operator<<(std::ostream& s, const Quaternion& q);
}
#endif