wheel_legged_gimbal/application/cmd/robot_cmd.c

512 lines
20 KiB
C
Raw Permalink Normal View History

// app
#include "robot_def.h"
#include "robot_cmd.h"
// module
#include "remote_control.h"
#include "ins_task.h"
#include "master_process.h"
#include "message_center.h"
#include "general_def.h"
#include "dji_motor.h"
2024-04-26 11:10:42 +08:00
#include "auto_aim.h"
#include "referee_task.h"
#include "referee_UI.h"
// bsp
#include "bsp_dwt.h"
#include "bsp_log.h"
// 私有宏,自动将编码器转换成角度值
#define YAW_ALIGN_ANGLE (YAW_CHASSIS_ALIGN_ECD * ECD_ANGLE_COEF_DJI) // 对齐时的角度,0-360
2024-05-14 23:45:21 +08:00
#define PITCH_HORIZON_ANGLE (PITCH_HORIZON_ECD * ECD_ANGLE_COEF_DJI) // pitch水平时电机的角度,0-360
/* cmd应用包含的模块实例指针和交互信息存储*/
#ifdef GIMBAL_BOARD // 对双板的兼容,条件编译
#include "can_comm.h"
2024-04-26 11:10:42 +08:00
#include "user_lib.h"
static CANCommInstance *cmd_can_comm; // 双板通信
#endif
#ifdef ONE_BOARD
static Publisher_t *chassis_cmd_pub; // 底盘控制消息发布者
static Subscriber_t *chassis_feed_sub; // 底盘反馈信息订阅者
#endif // ONE_BOARD
static Chassis_Ctrl_Cmd_s chassis_cmd_send; // 发送给底盘应用的信息,包括控制信息和UI绘制相关
static Chassis_Upload_Data_s chassis_fetch_data; // 从底盘应用接收的反馈信息信息,底盘功率枪口热量与底盘运动状态等
static RC_ctrl_t *rc_data; // 遥控器数据,初始化时返回
2024-04-26 11:10:42 +08:00
static VT_ctrl_t vt_data[2]; // 图传链路下发的键鼠遥控数据 与遥控器数据格式保持一致
static RecievePacket_t *vision_recv_data; // 视觉接收数据指针,初始化时返回
static SendPacket_t vision_send_data; // 视觉发送数据
//自瞄相关信息
static Trajectory_Type_t trajectory_cal;
static Aim_Select_Type_t aim_select;
static uint32_t no_find_cnt; // 未发现目标计数
static uint8_t auto_aim_flag = 0; //辅助瞄准标志位 视野内有目标开启 目标丢失关闭
static Publisher_t *gimbal_cmd_pub; // 云台控制消息发布者
static Subscriber_t *gimbal_feed_sub; // 云台反馈信息订阅者
static Gimbal_Ctrl_Cmd_s gimbal_cmd_send; // 传递给云台的控制信息
static Gimbal_Upload_Data_s gimbal_fetch_data; // 从云台获取的反馈信息
static Publisher_t *shoot_cmd_pub; // 发射控制消息发布者
static Subscriber_t *shoot_feed_sub; // 发射反馈信息订阅者
static Shoot_Ctrl_Cmd_s shoot_cmd_send; // 传递给发射的控制信息
static Shoot_Upload_Data_s shoot_fetch_data; // 从发射获取的反馈信息
static Robot_Status_e robot_state; // 机器人整体工作状态
2024-04-26 11:10:42 +08:00
static referee_info_t* referee_data; // 用于获取裁判系统的数据
static Referee_Interactive_info_t ui_data; // UI数据将底盘中的数据传入此结构体的对应变量中UI会自动检测是否变化对应显示UI
void RobotCMDInit()
{
rc_data = RemoteControlInit(&huart3); // 修改为对应串口,注意如果是自研板dbus协议串口需选用添加了反相器的那个
vision_recv_data = VisionInit(&huart1); // 视觉通信串口
2024-04-26 11:10:42 +08:00
referee_data = UITaskInit(&huart6,&ui_data); // 裁判系统初始化,会同时初始化UI
gimbal_cmd_pub = PubRegister("gimbal_cmd", sizeof(Gimbal_Ctrl_Cmd_s));
gimbal_feed_sub = SubRegister("gimbal_feed", sizeof(Gimbal_Upload_Data_s));
shoot_cmd_pub = PubRegister("shoot_cmd", sizeof(Shoot_Ctrl_Cmd_s));
shoot_feed_sub = SubRegister("shoot_feed", sizeof(Shoot_Upload_Data_s));
#ifdef ONE_BOARD // 双板兼容
chassis_cmd_pub = PubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
chassis_feed_sub = SubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
#endif // ONE_BOARD
#ifdef GIMBAL_BOARD
CANComm_Init_Config_s comm_conf = {
.can_config = {
.can_handle = &hcan1,
.tx_id = 0x312,
.rx_id = 0x311,
},
.recv_data_len = sizeof(Chassis_Upload_Data_s),
.send_data_len = sizeof(Chassis_Ctrl_Cmd_s),
};
cmd_can_comm = CANCommInit(&comm_conf);
#endif // GIMBAL_BOARD
gimbal_cmd_send.pitch = 0;
2024-04-26 11:10:42 +08:00
robot_state = ROBOT_STOP; // 轮腿 上电后进入ROBOT_STOP 保证安全(对应倒地状态)
}
/**
* @brief gimbal app传回的当前电机角度计算和零位的误差
* 0~360,
*
*/
2024-04-26 11:10:42 +08:00
static void CalcOffsetAngle()
{
// 别名angle提高可读性,不然太长了不好看,虽然基本不会动这个函数
static float angle;
2024-04-26 11:10:42 +08:00
static float offset_angle;
angle = gimbal_fetch_data.yaw_motor_single_round_angle; // 从云台获取的当前yaw电机单圈角度
#if YAW_ECD_GREATER_THAN_4096 // 如果大于180度
if (angle > YAW_ALIGN_ANGLE && angle <= 180.0f + YAW_ALIGN_ANGLE)
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE;
else if (angle > 180.0f + YAW_ALIGN_ANGLE)
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE - 360.0f;
else
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE;
#else // 小于180度
if (angle > YAW_ALIGN_ANGLE)
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE;
else if (angle <= YAW_ALIGN_ANGLE && angle >= YAW_ALIGN_ANGLE - 180.0f)
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE;
else
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE + 360.0f;
#endif
}
2024-05-14 23:45:21 +08:00
#define PITCH_ZERO_ANGLE 195.0f //电机旋转导致的云台相对底盘角度
static void pitch_limit()
{
static float PitchMotorAngle,DeltaPitchAngle;
PitchMotorAngle = gimbal_fetch_data.pitch_motor_ecd - PITCH_ZERO_ANGLE;//电机旋转导致的云台相对底盘角度
DeltaPitchAngle = gimbal_fetch_data.gimbal_imu_data.Pitch - PitchMotorAngle;
gimbal_cmd_send.pitch = LIMIT_MIN_MAX(gimbal_cmd_send.pitch, PITCH_MIN_ANGLE-DeltaPitchAngle, PITCH_MAX_ANGLE-DeltaPitchAngle);
}
static void auto_aim_mode() {
trajectory_cal.v0 = 25; //弹速30
if (vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0
&& vision_recv_data->vx == 0 && vision_recv_data->vy == 0 && vision_recv_data->vz == 0) {
aim_select.suggest_fire = 0;
//未发现目标
no_find_cnt++;
if (no_find_cnt >= 2000) {
//gimbal_scan_flag = 1;
//auto_aim_flag = 0;
}
//else
//auto_aim_flag = 1;
} else {
//弹道解算
no_find_cnt = 0;
auto_aim_flag = 1;
auto_aim(&aim_select, &trajectory_cal, vision_recv_data);
VisionSetAim(aim_select.aim_point[0], aim_select.aim_point[1], aim_select.aim_point[2]);
float single_angle_yaw_now = gimbal_fetch_data.gimbal_imu_data.Yaw;
float diff_yaw = trajectory_cal.cmd_yaw * 180 / PI - single_angle_yaw_now;
float yaw_err = diff_yaw;
if(diff_yaw>180)
diff_yaw -= 360;
else if(diff_yaw<-180)
diff_yaw += 360;
gimbal_cmd_send.yaw = gimbal_fetch_data.gimbal_imu_data.YawTotalAngle + diff_yaw;
gimbal_cmd_send.pitch = -trajectory_cal.cmd_pitch * 180 / PI;
if (yaw_err <= 3) //3度
{
aim_select.suggest_fire = 1;
}
else
aim_select.suggest_fire = 0;
}
}
/**
* @brief ()
*
*/
static void RemoteControlSet()
{
// 控制底盘和云台运行模式,云台待添加,云台是否始终使用IMU数据?
2024-04-26 11:10:42 +08:00
if (switch_is_down(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[下],小陀螺
{
chassis_cmd_send.chassis_mode = CHASSIS_ROTATE;
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
}
2024-04-26 11:10:42 +08:00
else if (switch_is_mid(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[中],底盘跟随模式
{
2024-04-26 11:10:42 +08:00
chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW;
2024-05-14 23:45:21 +08:00
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
}
// 云台参数,确定云台控制数据
2024-04-26 11:10:42 +08:00
if (switch_is_mid(rc_data[TEMP].rc.switch_left) ||
(vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0
&& vision_recv_data->vx == 0 && vision_recv_data->vy == 0 &&
vision_recv_data->vz == 0)) // 左侧开关状态为[中],或视觉未识别到目标,纯遥控器拨杆控制
{
// 待添加,视觉会发来和目标的误差,同样将其转化为total angle的增量进行控制
// ...
2024-04-26 11:10:42 +08:00
float yaw_add = -0.0005f * (float) rc_data[TEMP].rc.rocker_l_;
float pitch_add = -0.0003f * (float) rc_data[TEMP].rc.rocker_l1;
gimbal_cmd_send.yaw += yaw_add;
gimbal_cmd_send.pitch += pitch_add;
// if (gimbal_cmd_send.pitch >= PITCH_MAX_ANGLE) gimbal_cmd_send.pitch = PITCH_MAX_ANGLE;
// if (gimbal_cmd_send.pitch <= PITCH_MIN_ANGLE) gimbal_cmd_send.pitch = PITCH_MIN_ANGLE;
}
2024-04-26 11:10:42 +08:00
// 左侧开关状态为[下],视觉模式
if (switch_is_down(rc_data[TEMP].rc.switch_left)) {
2024-05-14 23:45:21 +08:00
auto_aim_mode();
}
// 云台软件限位
// 底盘参数,目前没有加入小陀螺(调试似乎暂时没有必要),系数需要调整
chassis_cmd_send.vx = 8.0f * (float)rc_data[TEMP].rc.rocker_r1; // _水平方向
chassis_cmd_send.vy = 8.0f * (float)rc_data[TEMP].rc.rocker_r_; // 1数值方向
2024-04-26 11:10:42 +08:00
//chassis_cmd_send.wz = 8.0f * (float)rc_data[TEMP].rc.rocker_r_; // 1数值方向
// 发射参数
if (switch_is_up(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[上],弹舱打开
; // 弹舱舵机控制,待添加servo_motor模块,开启
else
; // 弹舱舵机控制,待添加servo_motor模块,关闭
// 摩擦轮控制,拨轮向上打为负,向下为正
if (rc_data[TEMP].rc.dial < -100) // 向上超过100,打开摩擦轮
shoot_cmd_send.friction_mode = FRICTION_ON;
else
shoot_cmd_send.friction_mode = FRICTION_OFF;
// 拨弹控制,遥控器固定为一种拨弹模式,可自行选择
if (rc_data[TEMP].rc.dial < -500)
shoot_cmd_send.load_mode = LOAD_BURSTFIRE;
else
shoot_cmd_send.load_mode = LOAD_STOP;
// 射频控制,固定每秒1发,后续可以根据左侧拨轮的值大小切换射频,
shoot_cmd_send.shoot_rate = 8;
//检测到卡弹 拨弹盘反转
if(shoot_fetch_data.stalled_flag == 1)
shoot_cmd_send.load_mode = LOAD_REVERSE;
}
/**
* @brief
*
*/
static void MouseKeySet()
{
chassis_cmd_send.vx = rc_data[TEMP].key[KEY_PRESS].w * 300 - rc_data[TEMP].key[KEY_PRESS].s * 300; // 系数待测
chassis_cmd_send.vy = rc_data[TEMP].key[KEY_PRESS].s * 300 - rc_data[TEMP].key[KEY_PRESS].d * 300;
gimbal_cmd_send.yaw += (float)rc_data[TEMP].mouse.x / 660 * 10; // 系数待测
gimbal_cmd_send.pitch += (float)rc_data[TEMP].mouse.y / 660 * 10;
2024-05-14 23:45:21 +08:00
aim_select.suggest_fire = 0;
if (rc_data[TEMP].mouse.press_l && (!rc_data[TEMP].mouse.press_r)) // 左键发射模式
{
2024-05-14 23:45:21 +08:00
if (shoot_cmd_send.friction_mode == FRICTION_ON) {
shoot_cmd_send.shoot_mode = SHOOT_ON;
shoot_cmd_send.load_mode = LOAD_BURSTFIRE;
}
} else if ((!rc_data[TEMP].mouse.press_l) && (!rc_data[TEMP].mouse.press_r))
{
shoot_cmd_send.load_mode = LOAD_STOP;
}
if (rc_data[TEMP].mouse.press_r) // 右键自瞄模式
{
if ((vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0
&& vision_recv_data->vx == 0 && vision_recv_data->vy == 0 &&
vision_recv_data->vz == 0))
{
shoot_cmd_send.load_mode = LOAD_STOP;
} else {
auto_aim_mode();
if (aim_select.suggest_fire == 1 && rc_data[TEMP].mouse.press_l &&
shoot_cmd_send.friction_mode == FRICTION_ON) {
shoot_cmd_send.shoot_mode = SHOOT_ON;
shoot_cmd_send.load_mode = LOAD_BURSTFIRE;
} else {
shoot_cmd_send.load_mode = LOAD_STOP;
}
}
}
2024-05-14 23:45:21 +08:00
switch (rc_data[TEMP].key_count[KEY_PRESS][Key_E] % 4) // E键设置发射模式
{
case 0:
shoot_cmd_send.load_mode = LOAD_STOP;
break;
case 1:
shoot_cmd_send.load_mode = LOAD_1_BULLET;
break;
case 2:
shoot_cmd_send.load_mode = LOAD_3_BULLET;
break;
default:
shoot_cmd_send.load_mode = LOAD_BURSTFIRE;
break;
}
switch (rc_data[TEMP].key_count[KEY_PRESS][Key_R] % 2) // R键开关弹舱
{
case 0:
shoot_cmd_send.lid_mode = LID_OPEN;
break;
default:
shoot_cmd_send.lid_mode = LID_CLOSE;
break;
}
switch (rc_data[TEMP].key_count[KEY_PRESS][Key_F] % 2) // F键开关摩擦轮
{
case 0:
shoot_cmd_send.friction_mode = FRICTION_OFF;
break;
default:
shoot_cmd_send.friction_mode = FRICTION_ON;
break;
}
switch (rc_data[TEMP].key_count[KEY_PRESS][Key_C] % 4) // C键设置底盘速度
{
case 0:
chassis_cmd_send.chassis_speed_buff = 40;
break;
case 1:
chassis_cmd_send.chassis_speed_buff = 60;
break;
case 2:
chassis_cmd_send.chassis_speed_buff = 80;
break;
default:
chassis_cmd_send.chassis_speed_buff = 100;
break;
}
switch (rc_data[TEMP].key[KEY_PRESS].shift) // 待添加 按shift允许超功率 消耗缓冲能量
{
case 1:
break;
default:
break;
}
}
2024-04-26 11:10:42 +08:00
/**
* @brief
*
*/
static void VTMouseKeySet()
{
// 鼠标解析
vt_data[TEMP].mouse.x = referee_data->RemoteControl.mouse_x; //!< Mouse X axis
vt_data[TEMP].mouse.y = referee_data->RemoteControl.mouse_y; //!< Mouse Y axis
vt_data[TEMP].mouse.press_l = referee_data->RemoteControl.left_button_down; //!< Mouse Left Is Press ?
vt_data[TEMP].mouse.press_r = referee_data->RemoteControl.right_button_down; //!< Mouse Right Is Press ?
// 位域的按键值解算,直接memcpy即可,注意小端低字节在前,即lsb在第一位,msb在最后
*(uint16_t *)&vt_data[TEMP].key[KEY_PRESS] = referee_data->RemoteControl.keyboard_value;
if (vt_data[TEMP].key[KEY_PRESS].ctrl) // ctrl键按下
vt_data[TEMP].key[KEY_PRESS_WITH_CTRL] = vt_data[TEMP].key[KEY_PRESS];
else
memset(&vt_data[TEMP].key[KEY_PRESS_WITH_CTRL], 0, sizeof(Key_t));
if (vt_data[TEMP].key[KEY_PRESS].shift) // shift键按下
vt_data[TEMP].key[KEY_PRESS_WITH_SHIFT] = vt_data[TEMP].key[KEY_PRESS];
else
memset(&vt_data[TEMP].key[KEY_PRESS_WITH_SHIFT], 0, sizeof(Key_t));
uint16_t key_now = vt_data[TEMP].key[KEY_PRESS].keys, // 当前按键是否按下
key_last = vt_data[LAST].key[KEY_PRESS].keys, // 上一次按键是否按下
key_with_ctrl = vt_data[TEMP].key[KEY_PRESS_WITH_CTRL].keys, // 当前ctrl组合键是否按下
key_with_shift = vt_data[TEMP].key[KEY_PRESS_WITH_SHIFT].keys, // 当前shift组合键是否按下
key_last_with_ctrl = vt_data[LAST].key[KEY_PRESS_WITH_CTRL].keys, // 上一次ctrl组合键是否按下
key_last_with_shift = vt_data[LAST].key[KEY_PRESS_WITH_SHIFT].keys; // 上一次shift组合键是否按下
for (uint16_t i = 0, j = 0x1; i < 16; j <<= 1, i++)
{
if (i == 4 || i == 5) // 4,5位为ctrl和shift,直接跳过
continue;
// 如果当前按键按下,上一次按键没有按下,且ctrl和shift组合键没有按下,则按键按下计数加1(检测到上升沿)
if ((key_now & j) && !(key_last & j) && !(key_with_ctrl & j) && !(key_with_shift & j))
vt_data[TEMP].key_count[KEY_PRESS][i]++;
// 当前ctrl组合键按下,上一次ctrl组合键没有按下,则ctrl组合键按下计数加1(检测到上升沿)
if ((key_with_ctrl & j) && !(key_last_with_ctrl & j))
vt_data[TEMP].key_count[KEY_PRESS_WITH_CTRL][i]++;
// 当前shift组合键按下,上一次shift组合键没有按下,则shift组合键按下计数加1(检测到上升沿)
if ((key_with_shift & j) && !(key_last_with_shift & j))
vt_data[TEMP].key_count[KEY_PRESS_WITH_SHIFT][i]++;
}
memcpy(&vt_data[LAST], &vt_data[TEMP], sizeof(VT_ctrl_t)); // 保存上一次的数据,用于按键持续按下和切换的判断
2024-05-14 23:45:21 +08:00
chassis_cmd_send.vx = vt_data[TEMP].key[KEY_PRESS].w * 2000 - vt_data[TEMP].key[KEY_PRESS].s * 2000; // 系数待测
2024-04-26 11:10:42 +08:00
//chassis_cmd_send.vy = vt_data[TEMP].key[KEY_PRESS].s * 800 - vt_data[TEMP].key[KEY_PRESS].d * 800;
2024-05-14 23:45:21 +08:00
gimbal_cmd_send.yaw -= (float)vt_data[TEMP].mouse.x / 660 * 3; // 系数待测
gimbal_cmd_send.pitch -= (float)vt_data[TEMP].mouse.y / 660 * 3;
2024-04-26 11:10:42 +08:00
switch (vt_data[TEMP].key_count[KEY_PRESS][Key_F] % 2) // F键开关摩擦轮
{
case 0:
shoot_cmd_send.friction_mode = FRICTION_OFF;
break;
default:
shoot_cmd_send.friction_mode = FRICTION_ON;
break;
}
switch (vt_data[TEMP].key_count[KEY_PRESS][Key_Q] % 2) // Q键侧身
{
case 0:
//chassis_cmd_send.offset_angle = CalcOffsetAngle();
chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW;
break;
default:
//chassis_cmd_send.offset_angle = loop_float_constrain(CalcOffsetAngle() + 90,-180,180);
chassis_cmd_send.chassis_mode = CHASSIS_LATERAL;
break;
}
2024-05-14 23:45:21 +08:00
//R键手动刷新UI 发到底盘板自己处理
chassis_cmd_send.UI_refresh = vt_data[TEMP].key_count[KEY_PRESS][Key_R];
2024-04-26 11:10:42 +08:00
}
/**
* @brief ,/线/
* '300',.
*
* @todo 线(),daemon实现
*
*/
static void EmergencyHandler()
{
// 拨轮的向下拨超过一半进入急停模式.注意向打时下拨轮是正
2024-05-14 23:45:21 +08:00
if ((rc_data[TEMP].rc.dial > 300 || chassis_fetch_data.power_management_chassis_output == 0) //死亡状态 急停
|| robot_state == ROBOT_STOP) // 还需添加重要应用和模块离线的判断
{
robot_state = ROBOT_STOP;
gimbal_cmd_send.gimbal_mode = GIMBAL_ZERO_FORCE;
chassis_cmd_send.chassis_mode = CHASSIS_ZERO_FORCE;
shoot_cmd_send.shoot_mode = SHOOT_OFF;
shoot_cmd_send.friction_mode = FRICTION_OFF;
shoot_cmd_send.load_mode = LOAD_STOP;
LOGERROR("[CMD] emergency stop!");
}
// 遥控器右侧开关为[上],恢复正常运行
if (switch_is_up(rc_data[TEMP].rc.switch_right))
{
robot_state = ROBOT_READY;
shoot_cmd_send.shoot_mode = SHOOT_ON;
LOGINFO("[CMD] reinstate, robot ready");
}
}
/* 机器人核心控制任务,200Hz频率运行(必须高于视觉发送频率) */
void RobotCMDTask()
{
// 从其他应用获取回传数据
#ifdef ONE_BOARD
SubGetMessage(chassis_feed_sub, (void *)&chassis_fetch_data);
#endif // ONE_BOARD
#ifdef GIMBAL_BOARD
chassis_fetch_data = *(Chassis_Upload_Data_s *)CANCommGet(cmd_can_comm);
#endif // GIMBAL_BOARD
SubGetMessage(shoot_feed_sub, &shoot_fetch_data);
SubGetMessage(gimbal_feed_sub, &gimbal_fetch_data);
// 根据gimbal的反馈值计算云台和底盘正方向的夹角,不需要传参,通过static私有变量完成
CalcOffsetAngle();
// 根据遥控器左侧开关,确定当前使用的控制模式为遥控器调试还是键鼠
if (switch_is_down(rc_data[TEMP].rc.switch_left)) // 遥控器左侧开关状态为[下],遥控器控制
2024-04-26 11:10:42 +08:00
{
RemoteControlSet();
2024-04-26 11:10:42 +08:00
}
else if (switch_is_up(rc_data[TEMP].rc.switch_left)) // 遥控器左侧开关状态为[上],键盘控制
2024-04-26 11:10:42 +08:00
{
MouseKeySet();
2024-04-26 11:10:42 +08:00
}
2024-05-14 23:45:21 +08:00
else if (switch_is_mid(rc_data[TEMP].rc.switch_left)) // 遥控器左侧开关状态为[中],图传链路
2024-04-26 11:10:42 +08:00
VTMouseKeySet();
2024-05-14 23:45:21 +08:00
EmergencyHandler(); // 处理模块离线和遥控器急停等紧急情况
2024-05-14 23:45:21 +08:00
pitch_limit();
//设置视觉识别颜色
VisionSetFlag(chassis_fetch_data.enemy_color);
gimbal_cmd_send.chassis_rotate_wz = chassis_fetch_data.real_wz;
// 推送消息,双板通信,视觉通信等
// 其他应用所需的控制数据在remotecontrolsetmode和mousekeysetmode中完成设置
#ifdef ONE_BOARD
PubPushMessage(chassis_cmd_pub, (void *)&chassis_cmd_send);
#endif // ONE_BOARD
#ifdef GIMBAL_BOARD
CANCommSend(cmd_can_comm, (void *)&chassis_cmd_send);
#endif // GIMBAL_BOARD
PubPushMessage(shoot_cmd_pub, (void *)&shoot_cmd_send);
PubPushMessage(gimbal_cmd_pub, (void *)&gimbal_cmd_send);
}