// // Created by SJQ on 2024/3/7. // #include "estimator.h" static const float dt = 1e-3; //状态转移矩阵 static float F[4] = {0,1, 1,0}; //控制矩阵 static float B[2] = {dt, 1}; //观测矩阵 static float H[4] = {1,0, 0,1}; //后验估计协方差初始值 static float P[4] = {100, 0.1, 0.1, 100}; // P Q矩阵初始值(其实这里设置多少都无所谓) static float Q[4] = {0.01, 0, 0, 0.01}; static float R[4] = {100000, 0, 0, 100000,}; estimator::estimator(float process_noise, float measure_noise) { Kalman_Filter_Init(&EstimateKF_,2,1,2); EstimateKF_.UseAutoAdjustment = 1; for (uint8_t i = 0; i < 4; i += 3) { // 初始化过程噪声与量测噪声 Q[i] = process_noise; R[i] = measure_noise; } memcpy(EstimateKF_.F_data,F,sizeof(F)); memcpy(EstimateKF_.B_data,B,sizeof(B)); memcpy(EstimateKF_.H_data,H,sizeof(H)); memcpy(EstimateKF_.Q_data,Q,sizeof(Q)); memcpy(EstimateKF_.R_data,R,sizeof(R)); DWT_GetDeltaT(&DWT_CNT_); } void estimator::update(float x,float x_dot,float ax) { EstimateKF_.MeasuredVector[0] = x; EstimateKF_.MeasuredVector[1] = x_dot; EstimateKF_.ControlVector[0] = ax; Kalman_Filter_Update(&EstimateKF_); // 提取估计值 for (uint8_t i = 0; i < 2; i++) { Estimate_X_[i] = EstimateKF_.FilteredValue[i]; } } void estimator::get_result(float state[2]) { state[0] = Estimate_X_[0]; state[1] = Estimate_X_[1]; }