/** * @file chassis.c * @author NeoZeng neozng1@hnu.edu.cn * @brief 底盘应用,负责接收robot_cmd的控制命令并根据命令进行运动学解算,得到输出 * 注意底盘采取右手系,对于平面视图,底盘纵向运动的正前方为x正方向;横向运动的右侧为y正方向 * * @version 0.1 * @date 2022-12-04 * * @copyright Copyright (c) 2022 * */ #include "chassis.h" #include "robot_def.h" #include "dji_motor.h" #include "HT04.h" #include "LK9025.h" #include "super_cap.h" #include "message_center.h" #include "referee_task.h" #include "power_meter.h" #include "ins_task.h" #include "balance.h" #include "observer.h" #include "general_def.h" #include "bsp_dwt.h" #include "referee_UI.h" #include "arm_math.h" #include "vofa.h" #include "user_lib.h" /* 根据robot_def.h中的macro自动计算的参数 */ #define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f) // 半轴距 #define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f) // 半轮距 #define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI) // 轮子周长 /* 底盘应用包含的模块和信息存储,底盘是单例模式,因此不需要为底盘建立单独的结构体 */ #ifdef CHASSIS_BOARD // 如果是底盘板,使用板载IMU获取底盘转动角速度 #include "can_comm.h" #include "ins_task.h" static CANCommInstance *chasiss_can_comm; // 双板通信CAN comm INS_t *Chassis_IMU_data; #endif // CHASSIS_BOARD #ifdef ONE_BOARD static Publisher_t *chassis_pub; // 用于发布底盘的数据 static Subscriber_t *chassis_sub; // 用于订阅底盘的控制命令 #endif // !ONE_BOARD static Chassis_Ctrl_Cmd_s chassis_cmd_recv; // 底盘接收到的控制命令 static Chassis_Upload_Data_s chassis_feedback_data; // 底盘回传的反馈数据 static referee_info_t* referee_data; // 用于获取裁判系统的数据 static Referee_Interactive_info_t ui_data; // UI数据,将底盘中的数据传入此结构体的对应变量中,UI会自动检测是否变化,对应显示UI static SuperCapInstance *cap; // 超级电容 static PowerMeterInstance *power_meter; //功率计 static HTMotorInstance *motor_lf, *motor_rf, *motor_lb, *motor_rb; // left right forward back static LKMotorInstance *wheel_motor_r,*wheel_motor_l; /* 用于自旋变速策略的时间变量 */ /* 私有函数计算的中介变量,设为静态避免参数传递的开销 */ static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘 static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅 static LegInstance legInstance; Balance_Control_t BalanceControl; BalanceObserver Observer; PIDInstance Turn_Loop_PID , Roll_Loop_PID; Chassis_state_e ChassisState; void ChassisInit() { // 四个关节电机的参数,改tx_id和反转标志位即可 Motor_Init_Config_s chassis_motor_config = { .can_init_config.can_handle = &hcan2, .controller_setting_init_config = { .angle_feedback_source = MOTOR_FEED, .speed_feedback_source = MOTOR_FEED, .outer_loop_type = OPEN_LOOP, .close_loop_type = OPEN_LOOP,//| CURRENT_LOOP, }, .motor_type = HT04, }; Motor_Init_Config_s wheel_motor_config = { .can_init_config.can_handle = &hcan1, .controller_setting_init_config = { .angle_feedback_source = MOTOR_FEED, .speed_feedback_source = MOTOR_FEED, .outer_loop_type = OPEN_LOOP, .close_loop_type = OPEN_LOOP,//| CURRENT_LOOP, }, .motor_type = LK9025, }; // @todo: 当前还没有设置电机的正反转,仍然需要手动添加reference的正负号,需要电机module的支持,待修改. chassis_motor_config.can_init_config.tx_id = 1; //chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL; motor_rf = HTMotorInit(&chassis_motor_config); chassis_motor_config.can_init_config.tx_id = 2; //chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE; motor_rb = HTMotorInit(&chassis_motor_config); chassis_motor_config.can_init_config.tx_id = 3; //chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE; motor_lf = HTMotorInit(&chassis_motor_config); chassis_motor_config.can_init_config.tx_id = 4; //chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL; motor_lb = HTMotorInit(&chassis_motor_config); //@todo:瓴控驱动代码有些问题 1号电机必须先初始化 wheel_motor_config.can_init_config.tx_id = 1; wheel_motor_l = LKMotorInit(&wheel_motor_config); wheel_motor_config.can_init_config.tx_id = 2; wheel_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE; wheel_motor_r = LKMotorInit(&wheel_motor_config); referee_data = UITaskInit(&huart6,&ui_data); // 裁判系统初始化,会同时初始化UI SuperCap_Init_Config_s cap_conf = { .can_config = { .can_handle = &hcan2, .tx_id = 0x302, // 超级电容默认接收id .rx_id = 0x301, // 超级电容默认发送id,注意tx和rx在其他人看来是反的 }}; cap = SuperCapInit(&cap_conf); // 超级电容初始化 PowerMeter_Init_Config_s power_conf = { .can_config = { .can_handle = &hcan1, .rx_id = 0x212, } }; //功率計初始化 power_meter = PowerMeterInit(&power_conf); Balance_Init_config_s balanceInitConfig = { .legInitConfig = { .length_PID_conf = { .Kp = 500,//180 ,//50, .Ki = 100,//5, .Kd = 20,//10,//6,//6, .MaxOut = 100, .Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement | PID_DerivativeFilter, .Derivative_LPF_RC = 0.001f,//1/(2*PI*10), .IntegralLimit = 100, }, .phi0_PID_conf = { .Kp = 80, .Ki = 0, .Kd = 5, .MaxOut = 5, .Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement| PID_DerivativeFilter, .Derivative_LPF_RC = 1/(2*PI*10), .IntegralLimit = 100, }, .init_target_L0 = 0.15f, .F_feedforward = 0, }, .leg_cor_PID_config = { .Kp = 25, .Ki = 0, .Kd = 3, .MaxOut = 3, .Improve = PID_Derivative_On_Measurement| PID_DerivativeFilter, .Derivative_LPF_RC = 0.01f, }, .LQR_state_num = 6, .LQR_control_num = 2, }; //Leg_Init(&legInstance,&leg_r_init_conf); Balance_Control_Init(&BalanceControl,balanceInitConfig); Chassis_IMU_data = INS_Init(); // 底盘IMU初始化 //转向环 PID_Init_Config_s turn_pid_cfg = { .Kp = 10.0f,//1, .Ki = 0, .Kd = 0.0f, .MaxOut = 2, .Improve = PID_Derivative_On_Measurement, }; PIDInit(&Turn_Loop_PID,&turn_pid_cfg); //Roll轴平衡 PID_Init_Config_s roll_pid_cfg = { .Kp = 8.0f, .Ki = 0, .Kd = 0.5f, .MaxOut = 100, .Improve = PID_Derivative_On_Measurement, }; PIDInit(&Roll_Loop_PID,&roll_pid_cfg); Observer_Init(&Observer); // 发布订阅初始化,如果为双板,则需要can comm来传递消息 #ifdef CHASSIS_BOARD Chassis_IMU_data = INS_Init(); // 底盘IMU初始化 CANComm_Init_Config_s comm_conf = { .can_config = { .can_handle = &hcan1, .tx_id = 0x311, .rx_id = 0x312, }, .recv_data_len = sizeof(Chassis_Ctrl_Cmd_s), .send_data_len = sizeof(Chassis_Upload_Data_s), }; chasiss_can_comm = CANCommInit(&comm_conf); // can comm初始化 #endif // CHASSIS_BOARD #ifdef ONE_BOARD // 单板控制整车,则通过pubsub来传递消息 chassis_sub = SubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s)); chassis_pub = PubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s)); #endif // ONE_BOARD } /** * @brief 获取数据并计算状态量 * */ static void Chassis_State_update() { float leg_phi[4]={0}; float leg_phi_dot[4] = {0}; leg_phi[0] = PI-(motor_rf->measure.total_angle - 0.119031f); leg_phi[1] = -(motor_rb->measure.total_angle + 0.119031f); leg_phi[2] = PI-(-motor_lf->measure.total_angle - 0.119031f); leg_phi[3] = -(-motor_lb->measure.total_angle + 0.119031f); //最高点上电 // leg_phi[0] = PI-(motor_rf->measure.total_angle + 0.81007f); // leg_phi[1] = -(motor_rb->measure.total_angle - 0.81007f); // leg_phi[2] = PI-(-motor_lf->measure.total_angle + 0.81007f); // leg_phi[3] = -(-motor_lb->measure.total_angle - 0.81007f); leg_phi_dot[0] = -motor_rf->measure.speed_rads; leg_phi_dot[1] = -motor_rb->measure.speed_rads; leg_phi_dot[2] = motor_lf->measure.speed_rads; leg_phi_dot[3] = motor_lb->measure.speed_rads; float body_phi = Chassis_IMU_data->Pitch * DEGREE_2_RAD; float body_phi_dot = Chassis_IMU_data->Gyro[X]; float total_angle = (-wheel_motor_r->measure.total_angle + wheel_motor_l->measure.total_angle)/2; //陀螺仪积分获取位移和速度 static uint32_t integral_cnt = 0; static float imu_v,imu_x; float integral_dt = DWT_GetDeltaT(&integral_cnt); if(fabsf(Chassis_IMU_data->MotionAccel_n[X])>=0.02) { imu_v += Chassis_IMU_data->MotionAccel_n[X] * integral_dt; } imu_x += imu_v * integral_dt; //float theta_dot1 = (balanceControl->state[0] - theta) / dot_dt; float x = (total_angle * DEGREE_2_RAD ) * 0.135f/2; float speed = (- wheel_motor_r->measure.speed_rads + wheel_motor_l->measure.speed_rads)/2; float x_dot = speed * 0.135f/2; Balance_feedback_update(&BalanceControl,leg_phi,leg_phi_dot,body_phi,body_phi_dot,x,x_dot,Chassis_IMU_data->MotionAccel_n[2]); Leg_feedback_update(&BalanceControl.leg_right,motor_rf->measure.real_current / HT_CMD_COEF,motor_rb->measure.real_current / HT_CMD_COEF); Leg_feedback_update(&BalanceControl.leg_left,motor_lf->measure.real_current / HT_CMD_COEF,motor_lb->measure.real_current / HT_CMD_COEF); if( ChassisState == FAIL ) { if(abs(body_phi) <= 0.05 && abs(body_phi) <= 0.005 ) ChassisState = STAND; } } /* 机器人底盘控制核心任务 */ void ChassisTask() { // 后续增加没收到消息的处理(双板的情况) // 获取新的控制信息 #ifdef ONE_BOARD SubGetMessage(chassis_sub, &chassis_cmd_recv); #endif #ifdef CHASSIS_BOARD chassis_cmd_recv = *(Chassis_Ctrl_Cmd_s *)CANCommGet(chasiss_can_comm); #endif // CHASSIS_BOARD if (chassis_cmd_recv.chassis_mode == CHASSIS_NO_FOLLOW) { // 如果出现重要模块离线或遥控器设置为急停,让电机停止 HTMotorStop(motor_lf); HTMotorStop(motor_rf); HTMotorStop(motor_lb); HTMotorStop(motor_rb); LKMotorStop(wheel_motor_r); LKMotorStop(wheel_motor_l); } else { // 正常工作 HTMotorEnable(motor_lf); HTMotorEnable(motor_rf); HTMotorEnable(motor_lb); HTMotorEnable(motor_rb); LKMotorEnable(wheel_motor_r); LKMotorEnable(wheel_motor_l); } static int8_t init_flag = FALSE; // 根据控制模式设定旋转速度 switch (chassis_cmd_recv.chassis_mode) { case CHASSIS_NO_FOLLOW: // 底盘不旋转,但维持全向机动,一般用于调整云台姿态 //chassis_cmd_recv.wz = 0; break; case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出 //chassis_cmd_recv.wz = 1.0f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle); break; case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略 //chassis_cmd_recv.wz = 4000; chassis_cmd_recv.wz = 1.0f * chassis_cmd_recv.offset_angle* abs(chassis_cmd_recv.offset_angle); break; default: break; } // 根据云台和底盘的角度offset将控制量映射到底盘坐标系上 // 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东) static float sin_theta, cos_theta; // cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD); // sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD); sin_theta = 0; cos_theta = 1; chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta; chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta; // // 获取裁判系统数据 建议将裁判系统与底盘分离,所以此处数据应使用消息中心发送 // // 我方颜色id小于7是红色,大于7是蓝色,注意这里发送的是对方的颜色, 0:blue , 1:red // chassis_feedback_data.enemy_color = referee_data->GameRobotState.robot_id > 7 ? 1 : 0; // // 当前只做了17mm热量的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况 // chassis_feedback_data.bullet_speed = referee_data->GameRobotState.shooter_id1_17mm_speed_limit; // chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0; //获取数据并计算状态量 Chassis_State_update(); float vofa_send_data[8]; BalanceControl.leg_right.target_L0 += chassis_cmd_recv.vy/5280 * 0.0003f; BalanceControl.leg_right.target_L0 = float_constrain(BalanceControl.leg_right.target_L0,0.15f,0.30f); BalanceControl.leg_right.target_phi0 = PI/2; BalanceControl.leg_left.target_L0 = BalanceControl.leg_right.target_L0; BalanceControl.leg_left.target_L0 = float_constrain(BalanceControl.leg_left.target_L0,0.15f,0.30f); BalanceControl.leg_left.target_phi0 = PI/2; vofa_send_data[0] = BalanceControl.leg_right.legState.L0; vofa_send_data[1] = BalanceControl.leg_left.legState.L0; vofa_send_data[2] = BalanceControl.leg_length_PID.Ref; vofa_send_data[3] = BalanceControl.leg_length_PID.Measure; vofa_send_data[4] = BalanceControl.leg_right.legInput.F; vofa_send_data[5] = BalanceControl.leg_left.legInput.F; vofa_send_data[6] = Observer.Estimate_X[3]; vofa_send_data[7] = BalanceControl.state[3]; vofa_justfloat_output(vofa_send_data,32,&huart1); static float target_x = 0; static float target_yaw = 0; if(chassis_cmd_recv.chassis_mode == CHASSIS_ROTATE) // 右侧开关状态[下],底盘跟随云台 { float Roll_pid_out = PIDCalculate(&Roll_Loop_PID,-Chassis_IMU_data->Roll,0); //将roll轴自平衡PID输出直接叠加到前馈支持力上 BalanceControl.leg_right.F_feedforward = Roll_pid_out; BalanceControl.leg_left.F_feedforward = -Roll_pid_out; target_x += chassis_cmd_recv.vx/5280 * 0.003f; target_x_set(&BalanceControl,target_x); Balance_Control_Loop(&BalanceControl); target_yaw = chassis_cmd_recv.wz * 0.001f;//Chassis_IMU_data->Gyro[Z] //float turn_T = -PIDCalculate(&Turn_Loop_PID,chassis_cmd_recv.offset_angle,0); //float turn_T = -1.0f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle); float turn_T = PIDCalculate(&Turn_Loop_PID,Chassis_IMU_data->Gyro[Z],target_yaw); float T = float_constrain(BalanceControl.balance_LQR.control_vector[0],-4,4); float wheel_current_r = (T+turn_T) * LK_TORQUE_2_CMD; float wheel_current_l = (T-turn_T) * LK_TORQUE_2_CMD; float_constrain(wheel_current_r,-2000,2000); float_constrain(wheel_current_l,-2000,2000); if (ChassisState == FAIL) // 倒地 未起身 { HTMotorSetRef(motor_rf,0); HTMotorSetRef(motor_rb,0); HTMotorSetRef(motor_lf,0); HTMotorSetRef(motor_lb,0); PIDClear(&BalanceControl.leg_length_PID); PIDClear(&Turn_Loop_PID); PIDClear(&Roll_Loop_PID); PIDClear(&BalanceControl.leg_coordination_PID); } else { HTMotorSetRef(motor_rf,-BalanceControl.leg_right.legOutput.T1 * HT_CMD_COEF); HTMotorSetRef(motor_rb,-BalanceControl.leg_right.legOutput.T2 * HT_CMD_COEF); HTMotorSetRef(motor_lf,BalanceControl.leg_left.legOutput.T1 * HT_CMD_COEF); HTMotorSetRef(motor_lb,BalanceControl.leg_left.legOutput.T2 * HT_CMD_COEF); } LKMotorSetRef(wheel_motor_r,wheel_current_r); LKMotorSetRef(wheel_motor_l,wheel_current_l); Observer_Estimate(&Observer,BalanceControl.state,BalanceControl.balance_LQR.control_vector, BalanceControl.leg_right.legState.L0); Leg_feedback_update(&BalanceControl.leg_right,motor_rf->measure.real_current/HT_CMD_COEF,motor_rb->measure.real_current/HT_CMD_COEF); Leg_feedback_update(&BalanceControl.leg_left,motor_lf->measure.real_current/HT_CMD_COEF,motor_lb->measure.real_current/HT_CMD_COEF); } else{ PIDClear(&BalanceControl.leg_length_PID); PIDClear(&Turn_Loop_PID); PIDClear(&Roll_Loop_PID); PIDClear(&BalanceControl.leg_coordination_PID); } // 推送反馈消息 #ifdef ONE_BOARD PubPushMessage(chassis_pub, (void *)&chassis_feedback_data); #endif #ifdef CHASSIS_BOARD CANCommSend(chasiss_can_comm, (void *)&chassis_feedback_data); #endif // CHASSIS_BOARD }