// // Created by SJQ on 2024/1/13. // #include "observer.h" #include "bsp_dwt.h" #include "arm_math.h" static const float dt = 1e-1; //拟合A B矩阵的多项式系数 static const float p_A[6][3] = { {110.149443140716,-209.796047546046, 108.212820026855}, {6.56756328149907,-12.5089040777703,6.45209383844021}, {20.8432584790045,-14.5681682729471,-0.265391946757807}, {1.24276088149285,-0.868614169078260,0.164688375466239}, {-121.880643460273,85.1871469584697,1.55187545520287}, {-7.26702574149722,5.07920841420309,16.7402602760541} }; static const float p_B[6][3] = { {-171.924494208671,125.455249123645,-27.5944606199982}, {169.057788940511,-119.995181259560,24.7781571289566}, {-0.576505386985648,0.0174968125883799,0.781810074568448}, {0.0340470941093140,0.361648497135550,-0.267186973741535}, {3.37110666237256,-0.102312350965865,-1.14202204587003}, {-0.199089875614915,-2.11473419963208,6.60130194247413} }; float gEstimateKF_F[36] = {1, dt, 0, 0, 0,0, 0, 1, 0, 0, 0,0, 0, 0, 1, dt, 0,0, 0, 0, 0, 1, 0,0, 0, 0, 0, 0, 1,dt, 0, 0, 0, 0, 0,1}; // 状态转移矩阵其余项在滤波器更新时更新 float gEstimateKF_B[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // 控制矩阵其余项在滤波器更新时更新 const float gEstimateKF_H[36] = {1, 0, 0, 0, 0,0, 0, 1, 0, 0, 0,0, 0, 0, 1, 0, 0,0, 0, 0, 0, 1, 0,0, 0, 0, 0, 0, 1,0, 0, 0, 0, 0, 0,1}; // 由于不需要异步量测自适应,这里直接设置矩阵H为常量 void Observer_Init(BalanceObserver* observer) { KalmanFilter_t *kf = &observer->stateEstimateKF; Kalman_Filter_Init(kf,6,2,6); //暂时只使用状态预测一个步骤 kf->UseAutoAdjustment = 0; kf->SkipEq2 = 1; kf->SkipEq3 = 1; kf->SkipEq4 = 1; kf->SkipEq5 = 1; memcpy(kf->F_data , gEstimateKF_F , sizeof(gEstimateKF_F)); memcpy(kf->B_data , gEstimateKF_B , sizeof(gEstimateKF_B)); memcpy(kf->H_data , gEstimateKF_H , sizeof(gEstimateKF_H)); // set rest of memory to 0 DWT_GetDeltaT(&observer->DWT_CNT); } //由当前时刻的状态量预测dt时刻后的 void Observer_Estimate(BalanceObserver* observer,float* zk,float* uk,float L0) { float L2;//腿长的平方 arm_power_f32(&L0,1,&L2); KalmanFilter_t *kf = &observer->stateEstimateKF; float A[6],B[6]; for(int i = 0 ;i<6;i++) { A[i] = p_A[i][0] * L2 + p_A[i][1] * L0 + p_A[i][2]; B[i] = p_B[i][0] * L2 + p_B[i][1] * L0 + p_B[i][2]; } //F矩阵更新 kf->F_data[6] = A[0] * dt; kf->F_data[10] = A[1] * dt; kf->F_data[18] = A[2] * dt; kf->F_data[22] = A[3] * dt; kf->F_data[30] = A[4] * dt; kf->F_data[34] = A[5] * dt; //B矩阵更新 kf->B_data[2] = B[0]; kf->B_data[3] = B[1]; kf->B_data[6] = B[2]; kf->B_data[7] = B[3]; kf->B_data[10] = B[4]; kf->B_data[11] = B[5]; //测量值更新 memcpy(kf->MeasuredVector,zk,6*4 ); //测量值更新 memcpy(kf->ControlVector,uk,2*4); Kalman_Filter_Update(kf); memcpy(observer->Estimate_X,kf->xhatminus_data,6*4); }