#include "gimbal.h" #include "robot_def.h" #include "dji_motor.h" #include "ECmotor/ECA8210.h" #include "ins_task.h" #include "message_center.h" #include "general_def.h" #include "bmi088.h" #include "vofa.h" static INS_t *gimba_IMU_data; // 云台IMU数据 static DJIMotorInstance *yaw_motor, *pitch_motor; static ECMotorInstance *big_yaw_motor; static Publisher_t *gimbal_pub; // 云台应用消息发布者(云台反馈给cmd) static Subscriber_t *gimbal_sub; // cmd控制消息订阅者 static Gimbal_Upload_Data_s gimbal_feedback_data; // 回传给cmd的云台状态信息 static Gimbal_Ctrl_Cmd_s gimbal_cmd_recv; // 来自cmd的控制信息 sin_input_generate_t sinInputGenerate; void GimbalInit() { gimba_IMU_data = INS_Init(); // IMU先初始化,获取姿态数据指针赋给yaw电机的其他数据来源 // YAW Motor_Init_Config_s yaw_config = { .can_init_config = { .can_handle = &hcan1, .tx_id = 1, }, .controller_param_init_config = { .angle_PID = { .Kp = 0.5, // 8 .Ki = 0, .Kd = 0, .DeadBand = 0.1, .Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement, .IntegralLimit = 100, .MaxOut = 500, }, .speed_PID = { .Kp = 12000, // 50 .Ki = 3000, // 200 .Kd = 0, .Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement, .IntegralLimit = 3000, .MaxOut = 20000, }, .other_angle_feedback_ptr = &gimba_IMU_data->YawTotalAngle, // 还需要增加角速度额外反馈指针,注意方向,ins_task.md中有c板的bodyframe坐标系说明 .other_speed_feedback_ptr = &gimba_IMU_data->Gyro[2], }, .controller_setting_init_config = { .angle_feedback_source = OTHER_FEED, .speed_feedback_source = OTHER_FEED, .outer_loop_type = ANGLE_LOOP, .close_loop_type = SPEED_LOOP | ANGLE_LOOP, .motor_reverse_flag = MOTOR_DIRECTION_NORMAL, }, .motor_type = GM6020, .motor_control_type = CURRENT_CONTROL}; // PITCH Motor_Init_Config_s pitch_config = { .can_init_config = { .can_handle = &hcan2, .tx_id = 2, }, .controller_param_init_config = { // .angle_PID = { // .Kp = 10, // 10 // .Ki = 0, // .Kd = 0, // .Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement, // .IntegralLimit = 100, // .MaxOut = 500, // }, .speed_PID = { .Kp = 5.13, // 50 .Ki = 88.26, // 350 .Kd = 0, // 0 .Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement, .IntegralLimit = 2500, .MaxOut = 30000, }, // .other_angle_feedback_ptr = &gimba_IMU_data->Pitch, // // 还需要增加角速度额外反馈指针,注意方向,ins_task.md中有c板的bodyframe坐标系说明 // .other_speed_feedback_ptr = (&gimba_IMU_data->Gyro[0]), }, .controller_setting_init_config = { .outer_loop_type = SPEED_LOOP, .close_loop_type = SPEED_LOOP|CURRENT_LOOP, .motor_reverse_flag = MOTOR_DIRECTION_NORMAL, }, .motor_type = GM6020, .motor_control_type = CURRENT_CONTROL }; // 电机对total_angle闭环,上电时为零,会保持静止,收到遥控器数据再动 // yaw_motor = DJIMotorInit(&yaw_config); // pitch_motor = DJIMotorInit(&pitch_config); gimbal_pub = PubRegister("gimbal_feed", sizeof(Gimbal_Upload_Data_s)); gimbal_sub = SubRegister("gimbal_cmd", sizeof(Gimbal_Ctrl_Cmd_s)); sin_input_frequency_init(&sinInputGenerate); } /* 机器人云台控制核心任务,后续考虑只保留IMU控制,不再需要电机的反馈 */ void GimbalTask() { // 获取云台控制数据 // 后续增加未收到数据的处理 SubGetMessage(gimbal_sub, &gimbal_cmd_recv); // @todo:现在已不再需要电机反馈,实际上可以始终使用IMU的姿态数据来作为云台的反馈,yaw电机的offset只是用来跟随底盘 // 根据控制模式进行电机反馈切换和过渡,视觉模式在robot_cmd模块就已经设置好,gimbal只看yaw_ref和pitch_ref // switch (gimbal_cmd_recv.gimbal_mode) // { // // 停止 // case GIMBAL_ZERO_FORCE: // DJIMotorStop(yaw_motor); // DJIMotorStop(pitch_motor); // break; // // 使用陀螺仪的反馈,底盘根据yaw电机的offset跟随云台或视觉模式采用 // case GIMBAL_GYRO_MODE: // 后续只保留此模式 // DJIMotorEnable(yaw_motor); // DJIMotorEnable(pitch_motor); // DJIMotorChangeFeed(yaw_motor, ANGLE_LOOP, OTHER_FEED); // DJIMotorChangeFeed(yaw_motor, SPEED_LOOP, OTHER_FEED); // DJIMotorChangeFeed(pitch_motor, ANGLE_LOOP, OTHER_FEED); // DJIMotorChangeFeed(pitch_motor, SPEED_LOOP, OTHER_FEED); // DJIMotorSetRef(yaw_motor, gimbal_cmd_recv.yaw); // yaw和pitch会在robot_cmd中处理好多圈和单圈 //// DJIMotorSetRef(pitch_motor, gimbal_cmd_recv.pitch); // break; // // 云台自由模式,使用编码器反馈,底盘和云台分离,仅云台旋转,一般用于调整云台姿态(英雄吊射等)/能量机关 // case GIMBAL_FREE_MODE: // 后续删除,或加入云台追地盘的跟随模式(响应速度更快) // DJIMotorEnable(yaw_motor); // DJIMotorEnable(pitch_motor); // DJIMotorChangeFeed(yaw_motor, ANGLE_LOOP, OTHER_FEED); // DJIMotorChangeFeed(yaw_motor, SPEED_LOOP, OTHER_FEED); // DJIMotorChangeFeed(pitch_motor, ANGLE_LOOP, OTHER_FEED); // DJIMotorChangeFeed(pitch_motor, SPEED_LOOP, OTHER_FEED); // DJIMotorSetRef(yaw_motor, gimbal_cmd_recv.yaw); // yaw和pitch会在robot_cmd中处理好多圈和单圈 //// DJIMotorSetRef(pitch_motor, gimbal_cmd_recv.pitch); // break; // default: // break; // } // 在合适的地方添加pitch重力补偿前馈力矩 // 根据IMU姿态/pitch电机角度反馈计算出当前配重下的重力矩 // ... //DJIMotorEnable(pitch_motor); float input = step_input_generate(&sinInputGenerate); //DJIMotorSetRef(pitch_motor,input); //ANODT_SendF1(input*1000,pitch_motor->measure.speed_aps*1000,0,0); float theta = pitch_motor->measure.angle_single_round - 6200 * ECD_ANGLE_COEF_DJI; float gravity_feed = 3800*arm_cos_f32(theta/180*PI); //DJIMotorSetRef(pitch_motor,gravity_feed); float vofa_send_data[4]; vofa_send_data[0]=big_yaw_motor->measure.speed_rads; vofa_send_data[1]=big_yaw_motor->measure.angle_single_round; vofa_send_data[2]=big_yaw_motor->measure.real_current; vofa_send_data[3]=big_yaw_motor->measure.temperature; // vofa_send_data[3]=yaw_motor->motor_controller.angle_PID.Measure; vofa_justfloat_output(vofa_send_data,16,&huart1); vofa_send_data[0] = pitch_motor->motor_controller.pid_ref; vofa_send_data[1] = pitch_motor->measure.real_current; vofa_send_data[2] = theta; vofa_send_data[3] = gravity_feed; vofa_justfloat_output(vofa_send_data,16,&huart1); // 设置反馈数据,主要是imu和yaw的ecd gimbal_feedback_data.gimbal_imu_data = *gimba_IMU_data; gimbal_feedback_data.yaw_motor_single_round_angle = yaw_motor->measure.angle_single_round; // 推送消息 PubPushMessage(gimbal_pub, (void *)&gimbal_feedback_data); } //void sin_input_generate(float frequency, int count) //{ // static uint32_t cnt; // static float time; // while(time>=count*(1/frequency)) // { // float deltaT=DWT_GetDeltaT(&cnt); // time += deltaT; // // float input = arm_sin_f32(2*PI*frequency*time); // DJIMotorSetRef(yaw_motor,input); // } //} void sin_input_frequency_init(sin_input_generate_t* InputGenerate) { for(int i=0;i<43;i++) { InputGenerate->frequency[i] = 1.0 + 0.5*i; } for(int i=0;i<9;i++) { InputGenerate->frequency[i+43] = 24.0 + 2.0*i; } for(int i=0;i<8;i++) { InputGenerate->frequency[i+43+9] = 50 + 10*i; } InputGenerate->frequency[60] = 200; InputGenerate->frequency[61] = 250; InputGenerate->frequency[62] = 333; InputGenerate->frequency[63] = 500; } float sin_input_generate(sin_input_generate_t* InputGenerate) { InputGenerate->DeltaT = DWT_GetDeltaT(&InputGenerate->cnt); InputGenerate->time += InputGenerate->DeltaT; if(InputGenerate->time >= 20*(1/InputGenerate->frequency[InputGenerate->frequency_index])) { InputGenerate->time = 0; InputGenerate->frequency_index += 1; } if(InputGenerate->frequency_index >= 64) { InputGenerate->input = 0; } else InputGenerate->input = arm_sin_f32(2*PI*InputGenerate->frequency[InputGenerate->frequency_index]*InputGenerate->time); //float input = arm_sin_f32(2*PI*frequency*time); return InputGenerate->input; } float step_input_generate(sin_input_generate_t* InputGenerate) { static int8_t forward_flag = 1; InputGenerate->DeltaT = DWT_GetDeltaT(&InputGenerate->cnt); InputGenerate->time += InputGenerate->DeltaT; if(InputGenerate->time >= 3) { if(forward_flag ==1) forward_flag = -1; else if (forward_flag == -1) forward_flag = 1; InputGenerate->time = 0; } return 60*forward_flag; }