sentry_right/bsp/dwt/bsp_dwt.c

135 lines
3.2 KiB
C

/**
******************************************************************************
* @file bsp_dwt.c
* @author Wang Hongxi
* @author modified by Neo with annotation
* @version V1.1.0
* @date 2022/3/8
* @brief
*/
#include "bsp_dwt.h"
#include "cmsis_os.h"
static DWT_Time_t SysTime;
static uint32_t CPU_FREQ_Hz, CPU_FREQ_Hz_ms, CPU_FREQ_Hz_us;
static uint32_t CYCCNT_RountCount;
static uint32_t CYCCNT_LAST;
static uint64_t CYCCNT64;
/**
* @brief 私有函数,用于检查DWT CYCCNT寄存器是否溢出,并更新CYCCNT_RountCount
* @attention 此函数假设两次调用之间的时间间隔不超过一次溢出
*
* @todo 更好的方案是为dwt的时间更新单独设置一个任务?
* 不过,使用dwt的初衷是定时不被中断/任务等因素影响,因此该实现仍然有其存在的意义
*
*/
static void DWT_CNT_Update(void)
{
static volatile uint8_t bit_locker = 0;
if (!bit_locker)
{
bit_locker = 1;
volatile uint32_t cnt_now = DWT->CYCCNT;
if (cnt_now < CYCCNT_LAST)
CYCCNT_RountCount++;
CYCCNT_LAST = DWT->CYCCNT;
bit_locker = 0;
}
}
void DWT_Init(uint32_t CPU_Freq_mHz)
{
/* 使能DWT外设 */
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
/* DWT CYCCNT寄存器计数清0 */
DWT->CYCCNT = (uint32_t)0u;
/* 使能Cortex-M DWT CYCCNT寄存器 */
DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
CPU_FREQ_Hz = CPU_Freq_mHz * 1000000;
CPU_FREQ_Hz_ms = CPU_FREQ_Hz / 1000;
CPU_FREQ_Hz_us = CPU_FREQ_Hz / 1000000;
CYCCNT_RountCount = 0;
DWT_CNT_Update();
}
float DWT_GetDeltaT(uint32_t *cnt_last)
{
volatile uint32_t cnt_now = DWT->CYCCNT;
float dt = ((uint32_t)(cnt_now - *cnt_last)) / ((float)(CPU_FREQ_Hz));
*cnt_last = cnt_now;
DWT_CNT_Update();
return dt;
}
double DWT_GetDeltaT64(uint32_t *cnt_last)
{
volatile uint32_t cnt_now = DWT->CYCCNT;
double dt = ((uint32_t)(cnt_now - *cnt_last)) / ((double)(CPU_FREQ_Hz));
*cnt_last = cnt_now;
DWT_CNT_Update();
return dt;
}
void DWT_SysTimeUpdate(void)
{
volatile uint32_t cnt_now = DWT->CYCCNT;
static uint64_t CNT_TEMP1, CNT_TEMP2, CNT_TEMP3;
DWT_CNT_Update();
CYCCNT64 = (uint64_t)CYCCNT_RountCount * (uint64_t)UINT32_MAX + (uint64_t)cnt_now;
CNT_TEMP1 = CYCCNT64 / CPU_FREQ_Hz;
CNT_TEMP2 = CYCCNT64 - CNT_TEMP1 * CPU_FREQ_Hz;
SysTime.s = CNT_TEMP1;
SysTime.ms = CNT_TEMP2 / CPU_FREQ_Hz_ms;
CNT_TEMP3 = CNT_TEMP2 - SysTime.ms * CPU_FREQ_Hz_ms;
SysTime.us = CNT_TEMP3 / CPU_FREQ_Hz_us;
}
float DWT_GetTimeline_s(void)
{
DWT_SysTimeUpdate();
float DWT_Timelinef32 = SysTime.s + SysTime.ms * 0.001f + SysTime.us * 0.000001f;
return DWT_Timelinef32;
}
float DWT_GetTimeline_ms(void)
{
DWT_SysTimeUpdate();
float DWT_Timelinef32 = SysTime.s * 1000 + SysTime.ms + SysTime.us * 0.001f;
return DWT_Timelinef32;
}
uint64_t DWT_GetTimeline_us(void)
{
DWT_SysTimeUpdate();
uint64_t DWT_Timelinef32 = SysTime.s * 1000000 + SysTime.ms * 1000 + SysTime.us;
return DWT_Timelinef32;
}
void DWT_Delay(float Delay)
{
uint32_t tickstart = DWT->CYCCNT;
float wait = Delay;
while ((DWT->CYCCNT - tickstart) < wait * (float)CPU_FREQ_Hz)
;
}