#include "dji_motor.h" #include "general_def.h" #include "bsp_dwt.h" #include "bsp_log.h" static uint8_t idx = 0; // register idx,是该文件的全局电机索引,在注册时使用 /* DJI电机的实例,此处仅保存指针,内存的分配将通过电机实例初始化时通过malloc()进行 */ static DJIMotorInstance *dji_motor_instance[DJI_MOTOR_CNT] = {NULL}; // 会在control任务中遍历该指针数组进行pid计算 /** * @brief 由于DJI电机发送以四个一组的形式进行,故对其进行特殊处理,用6个(2can*3group)can_instance专门负责发送 * 该变量将在 DJIMotorControl() 中使用,分组在 MotorSenderGrouping()中进行 * * @note 因为只用于发送,所以不需要在bsp_can中注册 * * C610(m2006)/C620(m3508):0x1ff,0x200; * GM6020:0x1ff,0x2ff * 反馈(rx_id): GM6020: 0x204+id ; C610/C620: 0x200+id * can1: [0]:0x1FF,[1]:0x200,[2]:0x2FF * can2: [3]:0x1FF,[4]:0x200,[5]:0x2FF */ static CANInstance sender_assignment[10] = { [0] = {.can_handle = &hcan1, .txconf.StdId = 0x1ff, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [1] = {.can_handle = &hcan1, .txconf.StdId = 0x200, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [2] = {.can_handle = &hcan1, .txconf.StdId = 0x2ff, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [3] = {.can_handle = &hcan2, .txconf.StdId = 0x1ff, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [4] = {.can_handle = &hcan2, .txconf.StdId = 0x200, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [5] = {.can_handle = &hcan2, .txconf.StdId = 0x2ff, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [6] = {.can_handle = &hcan1, .txconf.StdId = 0x1fe, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [7] = {.can_handle = &hcan1, .txconf.StdId = 0x2fe, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [8] = {.can_handle = &hcan2, .txconf.StdId = 0x1fe, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, [9] = {.can_handle = &hcan2, .txconf.StdId = 0x2fe, .txconf.IDE = CAN_ID_STD, .txconf.RTR = CAN_RTR_DATA, .txconf.DLC = 0x08, .tx_buff = {0}}, }; /** * @brief 6个用于确认是否有电机注册到sender_assignment中的标志位,防止发送空帧,此变量将在DJIMotorControl()使用 * flag的初始化在 MotorSenderGrouping()中进行 */ static uint8_t sender_enable_flag[6] = {0}; /** * @brief 根据电调/拨码开关上的ID,根据说明书的默认id分配方式计算发送ID和接收ID, * 并对电机进行分组以便处理多电机控制命令 */ static void MotorSenderGrouping(DJIMotorInstance *motor, CAN_Init_Config_s *config) { uint8_t motor_id = config->tx_id - 1; // 下标从零开始,先减一方便赋值 uint8_t motor_send_num; uint8_t motor_grouping; switch (motor->motor_type) { case M2006: case M3508: if (motor_id < 4) // 根据ID分组 { motor_send_num = motor_id; motor_grouping = config->can_handle == &hcan1 ? 1 : 4; } else { motor_send_num = motor_id - 4; motor_grouping = config->can_handle == &hcan1 ? 0 : 3; } // 计算接收id并设置分组发送id config->rx_id = 0x200 + motor_id + 1; // 把ID+1,进行分组设置 sender_enable_flag[motor_grouping] = 1; // 设置发送标志位,防止发送空帧 motor->message_num = motor_send_num; motor->sender_group = motor_grouping; // 检查是否发生id冲突 for (size_t i = 0; i < idx; ++i) { if (dji_motor_instance[i]->motor_can_instance->can_handle == config->can_handle && dji_motor_instance[i]->motor_can_instance->rx_id == config->rx_id) { LOGERROR("[dji_motor] ID crash. Check in debug mode, add dji_motor_instance to watch to get more information."); uint16_t can_bus = config->can_handle == &hcan1 ? 1 : 2; while (1) // 6020的id 1-4和2006/3508的id 5-8会发生冲突(若有注册,即1!5,2!6,3!7,4!8) (1!5!,LTC! (((不是) LOGERROR("[dji_motor] id [%d], can_bus [%d]", config->rx_id, can_bus); } } break; case GM6020: if(motor->motor_control_type == CURRENT_CONTROL) //6020电流控制帧id 0x1fe 0x2fe { if (motor_id < 4) { motor_send_num = motor_id; motor_grouping = config->can_handle == &hcan1 ? 6 : 8; } else { motor_send_num = motor_id - 4; motor_grouping = config->can_handle == &hcan1 ? 7 : 9; } } else { if (motor_id < 4) { motor_send_num = motor_id; motor_grouping = config->can_handle == &hcan1 ? 0 : 3; } else { motor_send_num = motor_id - 4; motor_grouping = config->can_handle == &hcan1 ? 2 : 5; } } config->rx_id = 0x204 + motor_id + 1; // 把ID+1,进行分组设置 sender_enable_flag[motor_grouping] = 1; // 只要有电机注册到这个分组,置为1;在发送函数中会通过此标志判断是否有电机注册 motor->message_num = motor_send_num; motor->sender_group = motor_grouping; for (size_t i = 0; i < idx; ++i) { if (dji_motor_instance[i]->motor_can_instance->can_handle == config->can_handle && dji_motor_instance[i]->motor_can_instance->rx_id == config->rx_id) { LOGERROR("[dji_motor] ID crash. Check in debug mode, add dji_motor_instance to watch to get more information."); uint16_t can_bus = config->can_handle == &hcan1 ? 1 : 2; while (1) // 6020的id 1-4和2006/3508的id 5-8会发生冲突(若有注册,即1!5,2!6,3!7,4!8) (1!5!,LTC! (((不是) LOGERROR("[dji_motor] id [%d], can_bus [%d]", config->rx_id, can_bus); } } break; default: // other motors should not be registered here while (1) LOGERROR("[dji_motor]You must not register other motors using the API of DJI motor."); // 其他电机不应该在这里注册 } } /** * @todo 是否可以简化多圈角度的计算? * @brief 根据返回的can_instance对反馈报文进行解析 * * @param _instance 收到数据的instance,通过遍历与所有电机进行对比以选择正确的实例 */ static void DecodeDJIMotor(CANInstance *_instance) { // 这里对can instance的id进行了强制转换,从而获得电机的instance实例地址 // _instance指针指向的id是对应电机instance的地址,通过强制转换为电机instance的指针,再通过->运算符访问电机的成员motor_measure,最后取地址获得指针 uint8_t *rxbuff = _instance->rx_buff; DJIMotorInstance *motor = (DJIMotorInstance *)_instance->id; DJI_Motor_Measure_s *measure = &motor->measure; // measure要多次使用,保存指针减小访存开销 DaemonReload(motor->daemon); motor->dt = DWT_GetDeltaT(&motor->feed_cnt); // 解析数据并对电流和速度进行滤波,电机的反馈报文具体格式见电机说明手册 measure->last_ecd = measure->ecd; measure->ecd = ((uint16_t)rxbuff[0]) << 8 | rxbuff[1]; measure->angle_single_round = ECD_ANGLE_COEF_DJI * (float)measure->ecd; measure->speed_aps = (1.0f - SPEED_SMOOTH_COEF) * measure->speed_aps + RPM_2_ANGLE_PER_SEC * SPEED_SMOOTH_COEF * (float)((int16_t)(rxbuff[2] << 8 | rxbuff[3])); measure->real_current = (1.0f - CURRENT_SMOOTH_COEF) * measure->real_current + CURRENT_SMOOTH_COEF * (float)((int16_t)(rxbuff[4] << 8 | rxbuff[5])); measure->temperature = rxbuff[6]; // 多圈角度计算,前提是假设两次采样间电机转过的角度小于180°,自己画个图就清楚计算过程了 if (measure->ecd - measure->last_ecd > 4096) measure->total_round--; else if (measure->ecd - measure->last_ecd < -4096) measure->total_round++; measure->total_angle = measure->total_round * 360 + measure->angle_single_round; } static void DJIMotorLostCallback(void *motor_ptr) { DJIMotorInstance *motor = (DJIMotorInstance *)motor_ptr; uint16_t can_bus = motor->motor_can_instance->can_handle == &hcan1 ? 1 : 2; LOGWARNING("[dji_motor] Motor lost, can bus [%d] , id [%d]", can_bus, motor->motor_can_instance->tx_id); } // 电机初始化,返回一个电机实例 DJIMotorInstance *DJIMotorInit(Motor_Init_Config_s *config) { DJIMotorInstance *instance = (DJIMotorInstance *)malloc(sizeof(DJIMotorInstance)); memset(instance, 0, sizeof(DJIMotorInstance)); // motor basic setting 电机基本设置 instance->motor_type = config->motor_type; // 6020 or 2006 or 3508 instance->motor_settings = config->controller_setting_init_config; // 正反转,闭环类型等 instance->motor_control_type = config->motor_control_type; //电流控制or电压控制 // motor controller init 电机控制器初始化 PIDInit(&instance->motor_controller.current_PID, &config->controller_param_init_config.current_PID); PIDInit(&instance->motor_controller.speed_PID, &config->controller_param_init_config.speed_PID); PIDInit(&instance->motor_controller.angle_PID, &config->controller_param_init_config.angle_PID); instance->motor_controller.other_angle_feedback_ptr = config->controller_param_init_config.other_angle_feedback_ptr; instance->motor_controller.other_speed_feedback_ptr = config->controller_param_init_config.other_speed_feedback_ptr; instance->motor_controller.current_feedforward_ptr = config->controller_param_init_config.current_feedforward_ptr; instance->motor_controller.speed_feedforward_ptr = config->controller_param_init_config.speed_feedforward_ptr; // 后续增加电机前馈控制器(速度和电流) // 电机分组,因为至多4个电机可以共用一帧CAN控制报文 MotorSenderGrouping(instance, &config->can_init_config); // 注册电机到CAN总线 config->can_init_config.can_module_callback = DecodeDJIMotor; // set callback config->can_init_config.id = instance; // set id,eq to address(it is identity) instance->motor_can_instance = CANRegister(&config->can_init_config); // 注册守护线程 Daemon_Init_Config_s daemon_config = { .callback = DJIMotorLostCallback, .owner_id = instance, .reload_count = 2, // 20ms未收到数据则丢失 }; instance->daemon = DaemonRegister(&daemon_config); DJIMotorEnable(instance); dji_motor_instance[idx++] = instance; return instance; } /* 电流只能通过电机自带传感器监测,后续考虑加入力矩传感器应变片等 */ void DJIMotorChangeFeed(DJIMotorInstance *motor, Closeloop_Type_e loop, Feedback_Source_e type) { if (loop == ANGLE_LOOP) motor->motor_settings.angle_feedback_source = type; else if (loop == SPEED_LOOP) motor->motor_settings.speed_feedback_source = type; else LOGERROR("[dji_motor] loop type error, check memory access and func param"); // 检查是否传入了正确的LOOP类型,或发生了指针越界 } void DJIMotorStop(DJIMotorInstance *motor) { motor->stop_flag = MOTOR_STOP; } void DJIMotorEnable(DJIMotorInstance *motor) { motor->stop_flag = MOTOR_ENALBED; } /* 修改电机的实际闭环对象 */ void DJIMotorOuterLoop(DJIMotorInstance *motor, Closeloop_Type_e outer_loop) { motor->motor_settings.outer_loop_type = outer_loop; } // 设置参考值 void DJIMotorSetRef(DJIMotorInstance *motor, float ref) { motor->motor_controller.pid_ref = ref; } static const float motor_power_K[3] = {1.6301e-6f,5.7501e-7f,2.5863e-7f}; //依据3508电机功率模型,预测电机输出功率 static float EstimatePower(DJIMotorInstance* chassis_motor,float output) { float I_cmd = chassis_motor->motor_controller.current_PID.Output; float w = chassis_motor->measure.speed_aps /6 ;//aps to rpm float power = motor_power_K[0] * I_cmd * w + motor_power_K[1]*w*w + motor_power_K[2]*I_cmd*I_cmd; return power; } // 为所有电机实例计算三环PID,发送控制报文 void DJIMotorControl() { // 直接保存一次指针引用从而减小访存的开销,同样可以提高可读性 uint8_t group, num; // 电机组号和组内编号 int16_t set; // 电机控制CAN发送设定值 DJIMotorInstance *motor; Motor_Control_Setting_s *motor_setting; // 电机控制参数 Motor_Controller_s *motor_controller; // 电机控制器 DJI_Motor_Measure_s *measure; // 电机测量值 float pid_measure, pid_ref; // 电机PID测量值和设定值 // 遍历所有电机实例,进行串级PID的计算并设置发送报文的值 for (size_t i = 0; i < idx; ++i) { // 减小访存开销,先保存指针引用 motor = dji_motor_instance[i]; motor_setting = &motor->motor_settings; motor_controller = &motor->motor_controller; measure = &motor->measure; pid_ref = motor_controller->pid_ref; // 保存设定值,防止motor_controller->pid_ref在计算过程中被修改 if (motor_setting->motor_reverse_flag == MOTOR_DIRECTION_REVERSE) pid_ref *= -1; // 设置反转 // pid_ref会顺次通过被启用的闭环充当数据的载体 // 计算位置环,只有启用位置环且外层闭环为位置时会计算速度环输出 if ((motor_setting->close_loop_type & ANGLE_LOOP) && motor_setting->outer_loop_type == ANGLE_LOOP) { if (motor_setting->angle_feedback_source == OTHER_FEED) pid_measure = *motor_controller->other_angle_feedback_ptr; else pid_measure = measure->total_angle; // MOTOR_FEED,对total angle闭环,防止在边界处出现突跃 // 更新pid_ref进入下一个环 pid_ref = PIDCalculate(&motor_controller->angle_PID, pid_measure, pid_ref); } // 计算速度环,(外层闭环为速度或位置)且(启用速度环)时会计算速度环 if ((motor_setting->close_loop_type & SPEED_LOOP) && (motor_setting->outer_loop_type & (ANGLE_LOOP | SPEED_LOOP))) { if (motor_setting->feedforward_flag & SPEED_FEEDFORWARD) pid_ref += *motor_controller->speed_feedforward_ptr; if (motor_setting->speed_feedback_source == OTHER_FEED) pid_measure = *motor_controller->other_speed_feedback_ptr; else // MOTOR_FEED pid_measure = measure->speed_aps; // 更新pid_ref进入下一个环 pid_ref = PIDCalculate(&motor_controller->speed_PID, pid_measure, pid_ref); } // 计算电流环,目前只要启用了电流环就计算,不管外层闭环是什么,并且电流只有电机自身传感器的反馈 if (motor_setting->feedforward_flag & CURRENT_FEEDFORWARD) pid_ref += *motor_controller->current_feedforward_ptr; if (motor_setting->close_loop_type & CURRENT_LOOP) { //现在3508和6020电调都内置电流闭环 无需PID计算 //pid_ref = PIDCalculate(&motor_controller->current_PID, measure->real_current, pid_ref); //motor_controller->current_PID.Output = pid_ref; //pid_ref = pid_ref; } if (motor_setting->feedback_reverse_flag == FEEDBACK_DIRECTION_REVERSE) pid_ref *= -1; //功率限制 if(motor_setting->power_limit_flag == POWER_LIMIT_ON) { float I_cmd = pid_ref; float w = measure->speed_aps /6 ;//aps to rpm motor_controller->motor_power_predict = motor_power_K[0] * I_cmd * w + motor_power_K[1]*w*w + motor_power_K[2]*I_cmd*I_cmd; //这里K应该使用所有底盘电机一起计算 (在底盘任务中) //float K = motor_controller->motor_power_max / motor_controller->motor_power_predict; float K = motor_controller->motor_power_scale; if(K>=1 || motor_controller->motor_power_predict < 0)//未超过最大功率 或做负功的电机 不做限制 { } else if(K<1) { float P_cmd = K * motor_controller->motor_power_predict; //对输出功率进行缩放 float a = motor_power_K[2] ; float b = motor_power_K[0] * w; float c = motor_power_K[1] * w * w - P_cmd; if(pid_ref < 0) pid_ref = (-b - sqrtf(b*b-4*a*c))/(2*a); else pid_ref = (-b + sqrtf(b*b-4*a*c))/(2*a); } //if( motor_controller->motor_power_predict < ) } // 获取最终输出 set = (int16_t)pid_ref; // 分组填入发送数据 group = motor->sender_group; num = motor->message_num; sender_assignment[group].tx_buff[2 * num] = (uint8_t)(set >> 8); // 低八位 sender_assignment[group].tx_buff[2 * num + 1] = (uint8_t)(set & 0x00ff); // 高八位 // 若该电机处于停止状态,直接将buff置零 if (motor->stop_flag == MOTOR_STOP) memset(sender_assignment[group].tx_buff + 2 * num, 0, 16u); } // 遍历flag,检查是否要发送这一帧报文 for (size_t i = 0; i < 10; ++i) { if (sender_enable_flag[i]) { CANTransmit(&sender_assignment[i], 1); } } }