sentry_left/application/gimbal/gimbal.c

327 lines
12 KiB
C

#include "gimbal.h"
#include "robot_def.h"
#include "dji_motor.h"
#include "ECmotor/ECA8210.h"
#include "ins_task.h"
#include "message_center.h"
#include "general_def.h"
#include "bmi088.h"
#include "vofa.h"
#include "power_meter.h"
#include "user_lib.h"
static attitude_t *gimba_IMU_data; // 云台IMU数据
static DJIMotorInstance *yaw_motor, *pitch_motor;
static ECMotorInstance *big_yaw_motor;
static Publisher_t *gimbal_pub; // 云台应用消息发布者(云台反馈给cmd)
static Subscriber_t *gimbal_sub; // cmd控制消息订阅者
static Gimbal_Upload_Data_s gimbal_feedback_data; // 回传给cmd的云台状态信息
static Gimbal_Ctrl_Cmd_s gimbal_cmd_recv; // 来自cmd的控制信息
static float current_feedforward = 0.0f;
static float yaw_speed = 0.0f; //yaw轴旋转角速度需要通过pitch解算确定
static float big_yaw_angle = 0.0f; //大yaw轴绝对角度 通过小云台陀螺仪yaw-yaw轴编码器角度确定
static float big_yaw_speed = 0.0f;//大yaw轴绝对角速度
sin_input_generate_t sinInputGenerate;
void GimbalInit()
{
gimba_IMU_data = INS_Init(); // IMU先初始化,获取姿态数据指针赋给yaw电机的其他数据来源
// YAW
Motor_Init_Config_s yaw_config = {
.can_init_config = {
.can_handle = &hcan1,
.tx_id = 1,
},
.controller_param_init_config = {
.angle_PID = {
.Kp = 1.0f, // 8
.Ki = 0,
.Kd = 0,
.DeadBand = 0.1,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.IntegralLimit = 100,
.MaxOut = 500,
},
.speed_PID = {
.Kp = 6000, // 50
.Ki = 500,//5000, // 200
.Kd = 0,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.IntegralLimit = 5000,
.MaxOut = 16000,
},
.other_angle_feedback_ptr = &gimba_IMU_data->YawTotalAngle,
// 还需要增加角速度额外反馈指针,注意方向,ins_task.md中有c板的bodyframe坐标系说明
.other_speed_feedback_ptr = &yaw_speed,//&gimba_IMU_data->Gyro[2],
},
.controller_setting_init_config = {
.angle_feedback_source = OTHER_FEED,
.speed_feedback_source = OTHER_FEED,
.outer_loop_type = ANGLE_LOOP,
.close_loop_type = SPEED_LOOP | ANGLE_LOOP,
.motor_reverse_flag = MOTOR_DIRECTION_NORMAL,
},
.motor_type = GM6020,
.motor_control_type = CURRENT_CONTROL
};
// PITCH
Motor_Init_Config_s pitch_config = {
.can_init_config = {
.can_handle = &hcan1,
.tx_id = 2,
},
.controller_param_init_config = {
.angle_PID = {
.Kp = 2.0f,//4.0f,//2.0f
.Ki = 0.0f,//1,//0
.Kd = 0.0f,//0.0f
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.IntegralLimit = 100,
.MaxOut = 500,
},
.speed_PID = {
.Kp = 800,//6000,//800
.Ki = 100,//500,//100
.Kd = 0,//0
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.IntegralLimit = 5000,
.MaxOut = 10000,
},
.other_angle_feedback_ptr = &gimba_IMU_data->Roll,//&gimba_IMU_data->Pitch,
// 还需要增加角速度额外反馈指针,注意方向,ins_task.md中有c板的bodyframe坐标系说明
.other_speed_feedback_ptr = (&gimba_IMU_data->Gyro[1]),//(&gimba_IMU_data->Gyro[0]),
.current_feedforward_ptr = &current_feedforward,
},
.controller_setting_init_config = {
.outer_loop_type = ANGLE_LOOP,
.close_loop_type = ANGLE_LOOP|SPEED_LOOP|CURRENT_LOOP,
.motor_reverse_flag = MOTOR_DIRECTION_NORMAL,
.feedforward_flag = CURRENT_FEEDFORWARD,
},
.motor_type = GM6020,
.motor_control_type = CURRENT_CONTROL,//CURRENT_CONTROL
};
Motor_Init_Config_s big_yaw_config = {
.can_init_config = {
.can_handle = &hcan2,
.tx_id = 1,
},
.controller_param_init_config = {
.angle_PID = {
.Kp = 0.06f, // 10
.Ki = 0,
.Kd = 0.0f,
.Improve = PID_Integral_Limit | PID_Derivative_On_Measurement |PID_DerivativeFilter,
.IntegralLimit = 100,
.MaxOut = 1000,
.DeadBand = 0,
},
.speed_PID = {
.Kp = 300,//2500, // 50
.Ki = 0,//200, // 350
.Kd = 0, // 0
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.IntegralLimit = 10000,
.MaxOut = 1000,
},
.other_angle_feedback_ptr = &big_yaw_angle,
.other_speed_feedback_ptr = &big_yaw_speed,
},
.controller_setting_init_config = {
.angle_feedback_source = OTHER_FEED,
.speed_feedback_source = OTHER_FEED,
.outer_loop_type = ANGLE_LOOP,
.close_loop_type = ANGLE_LOOP|SPEED_LOOP|CURRENT_LOOP,
.motor_reverse_flag = MOTOR_DIRECTION_NORMAL,
},
.motor_type = ECA8210,
};
// 电机对total_angle闭环,上电时为零,会保持静止,收到遥控器数据再动
yaw_motor = DJIMotorInit(&yaw_config);
pitch_motor = DJIMotorInit(&pitch_config);
big_yaw_motor = ECMotorInit(&big_yaw_config);
gimbal_pub = PubRegister("gimbal_feed", sizeof(Gimbal_Upload_Data_s));
gimbal_sub = SubRegister("gimbal_cmd", sizeof(Gimbal_Ctrl_Cmd_s));
//sin_input_frequency_init(&sinInputGenerate);
}
/* 机器人云台控制核心任务,后续考虑只保留IMU控制,不再需要电机的反馈 */
void GimbalTask()
{
// 获取云台控制数据
// 后续增加未收到数据的处理
SubGetMessage(gimbal_sub, &gimbal_cmd_recv);
// @todo:现在已不再需要电机反馈,实际上可以始终使用IMU的姿态数据来作为云台的反馈,yaw电机的offset只是用来跟随底盘
// 根据控制模式进行电机反馈切换和过渡,视觉模式在robot_cmd模块就已经设置好,gimbal只看yaw_ref和pitch_ref
switch (gimbal_cmd_recv.gimbal_mode)
{
// 停止
case GIMBAL_ZERO_FORCE:
DJIMotorStop(yaw_motor);
DJIMotorStop(pitch_motor);
ECMotorStop(big_yaw_motor);
break;
// 使用陀螺仪的反馈,底盘根据yaw电机的offset跟随云台或视觉模式采用
case GIMBAL_GYRO_MODE: // 后续只保留此模式
DJIMotorEnable(yaw_motor);
DJIMotorEnable(pitch_motor);
ECMotorEnable(big_yaw_motor);
// DJIMotorStop(yaw_motor);
// DJIMotorStop(pitch_motor);
// ECMotorStop(big_yaw_motor);
DJIMotorChangeFeed(yaw_motor, ANGLE_LOOP, OTHER_FEED);
DJIMotorChangeFeed(yaw_motor, SPEED_LOOP, OTHER_FEED);
DJIMotorChangeFeed(pitch_motor, ANGLE_LOOP, OTHER_FEED);
DJIMotorChangeFeed(pitch_motor, SPEED_LOOP, OTHER_FEED);
DJIMotorSetRef(yaw_motor, gimbal_cmd_recv.yaw); // yaw和pitch会在robot_cmd中处理好多圈和单圈
DJIMotorSetRef(pitch_motor, gimbal_cmd_recv.pitch);
ECMotorSetRef(big_yaw_motor,gimbal_cmd_recv.yaw);
break;
// 云台自由模式,使用编码器反馈,底盘和云台分离,仅云台旋转,一般用于调整云台姿态(英雄吊射等)/能量机关
case GIMBAL_FREE_MODE: // 后续删除,或加入云台追地盘的跟随模式(响应速度更快)
DJIMotorEnable(yaw_motor);
DJIMotorEnable(pitch_motor);
ECMotorEnable(big_yaw_motor);
DJIMotorChangeFeed(yaw_motor, ANGLE_LOOP, OTHER_FEED);
DJIMotorChangeFeed(yaw_motor, SPEED_LOOP, OTHER_FEED);
DJIMotorChangeFeed(pitch_motor, ANGLE_LOOP, OTHER_FEED);
DJIMotorChangeFeed(pitch_motor, SPEED_LOOP, OTHER_FEED);
DJIMotorSetRef(yaw_motor, gimbal_cmd_recv.yaw); // yaw和pitch会在robot_cmd中处理好多圈和单圈
DJIMotorSetRef(pitch_motor, gimbal_cmd_recv.pitch);
ECMotorSetRef(big_yaw_motor,gimbal_cmd_recv.yaw);
break;
default:
break;
}
// 在合适的地方添加pitch重力补偿前馈力矩
// 根据IMU姿态/pitch电机角度反馈计算出当前配重下的重力矩
// ...
float input = sin_input_generate(&sinInputGenerate);
//ANODT_SendF1(input*1000,pitch_motor->measure.speed_aps*1000,0,0);
float theta = gimba_IMU_data->Roll/180*PI;//(pitch_motor->measure.angle_single_round - 5505 * ECD_ANGLE_COEF_DJI)/180*PI;
yaw_speed = gimba_IMU_data->Gyro[2] * arm_cos_f32(theta) - gimba_IMU_data->Gyro[0] * arm_sin_f32(theta);
big_yaw_angle = gimba_IMU_data->YawTotalAngle - (yaw_motor->measure.total_angle - 44);
big_yaw_speed = yaw_speed - yaw_motor->measure.speed_aps * DEGREE_2_RAD;
//yaw轴角速度
//重力补偿力矩
current_feedforward = (7000)*arm_cos_f32(theta);
float vofa_send_data[6];
vofa_send_data[0] = pitch_motor->measure.speed_aps;
vofa_send_data[1] = gimba_IMU_data->Pitch;
vofa_send_data[2] = gimba_IMU_data->Gyro[0];
vofa_send_data[3] = pitch_motor->motor_controller.speed_PID.Ref;
vofa_send_data[4] = pitch_motor->motor_controller.speed_PID.Measure;
vofa_send_data[5] = pitch_motor->measure.angle_single_round;
vofa_justfloat_output(vofa_send_data,24,&huart1);
// 设置反馈数据,主要是imu和yaw的ecd
gimbal_feedback_data.gimbal_imu_data = *gimba_IMU_data;
static float big_yaw_relative_angle;
big_yaw_relative_angle = big_yaw_motor->measure.total_angle * (4.0f/3.0f);
gimbal_feedback_data.yaw_motor_single_round_angle = loop_float_constrain(big_yaw_relative_angle,0,2*PI) * RAD_2_DEGREE;
gimbal_feedback_data.mini_yaw_encode_angle = yaw_motor->measure.angle_single_round;
// 推送消息
PubPushMessage(gimbal_pub, (void *)&gimbal_feedback_data);
}
//void sin_input_generate(float frequency, int count)
//{
// static uint32_t cnt;
// static float time;
// while(time>=count*(1/frequency))
// {
// float deltaT=DWT_GetDeltaT(&cnt);
// time += deltaT;
//
// float input = arm_sin_f32(2*PI*frequency*time);
// DJIMotorSetRef(yaw_motor,input);
// }
//}
void sin_input_frequency_init(sin_input_generate_t* InputGenerate)
{
for(int i=0;i<43;i++)
{
InputGenerate->frequency[i] = 1.0 + 0.5*i;
}
for(int i=0;i<9;i++)
{
InputGenerate->frequency[i+43] = 24.0 + 2.0*i;
}
for(int i=0;i<8;i++)
{
InputGenerate->frequency[i+43+9] = 50 + 10*i;
}
InputGenerate->frequency[60] = 200;
InputGenerate->frequency[61] = 250;
InputGenerate->frequency[62] = 333;
InputGenerate->frequency[63] = 500;
}
float sin_input_generate(sin_input_generate_t* InputGenerate)
{
InputGenerate->DeltaT = DWT_GetDeltaT(&InputGenerate->cnt);
InputGenerate->time += InputGenerate->DeltaT;
if(InputGenerate->time >= 20*(1/InputGenerate->frequency[InputGenerate->frequency_index]))
{
InputGenerate->time = 0;
InputGenerate->frequency_index += 1;
}
if(InputGenerate->frequency_index >= 64)
{
InputGenerate->input = 0;
}
else
InputGenerate->input = arm_sin_f32(2*PI*InputGenerate->frequency[InputGenerate->frequency_index]*InputGenerate->time);
//float input = arm_sin_f32(2*PI*frequency*time);
InputGenerate->input *= 2000;
return InputGenerate->input;
}
float step_input_generate(sin_input_generate_t* InputGenerate)
{
static int8_t forward_flag = 1;
InputGenerate->DeltaT = DWT_GetDeltaT(&InputGenerate->cnt);
InputGenerate->time += InputGenerate->DeltaT;
if(InputGenerate->time >= 3)
{
if(forward_flag ==1) forward_flag = -1;
else if (forward_flag == -1) forward_flag = 1;
InputGenerate->time = 0;
}
return 60*forward_flag;
}