sentry_left/application/cmd/robot_cmd.c

598 lines
23 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// app
#include "robot_def.h"
#include "robot_cmd.h"
// module
#include "remote_control.h"
#include "ins_task.h"
#include "master_process.h"
#include "message_center.h"
#include "general_def.h"
#include "dji_motor.h"
#include "DM4310.h"
#include "auto_aim.h"
#include "referee_task.h"
// bsp
#include "bsp_dwt.h"
#include "bsp_log.h"
// 私有宏,自动将编码器转换成角度值
#define YAW_ALIGN_ANGLE 245.0f //(YAW_CHASSIS_ALIGN_ECD * ECD_ANGLE_COEF_DJI) // 对齐时的角度,0-360
#define PTICH_HORIZON_ANGLE (PITCH_HORIZON_ECD * ECD_ANGLE_COEF_DJI) // pitch水平时电机的角度,0-360
#define PITCH_SCAN 20.0f //扫描阶段PITCH固定角度 寻找前哨站
#define SHOOT_RATE 15.0f //射频
#define MIN_SHOOT_RATE 5.0f //热量过高降低射频射频
/* cmd应用包含的模块实例指针和交互信息存储*/
#ifdef GIMBAL_BOARD // 对双板的兼容,条件编译
#include "can_comm.h"
static CANCommInstance *cmd_can_comm; // 双板通信
#endif
#ifdef ONE_BOARD
static Publisher_t *chassis_cmd_pub; // 底盘控制消息发布者
static Subscriber_t *chassis_feed_sub; // 底盘反馈信息订阅者
#endif // ONE_BOARD
#include "can_comm.h"
static CANCommInstance *cmd_can_comm; //哨兵左右云台 双板通信
static Chassis_Ctrl_Cmd_s chassis_cmd_send; // 发送给底盘应用的信息,包括控制信息和UI绘制相关
static Chassis_Upload_Data_s chassis_fetch_data; // 从底盘应用接收的反馈信息信息,底盘功率枪口热量与底盘运动状态等
static RC_ctrl_t *rc_data; // 遥控器数据,初始化时返回
static RecievePacket_t *vision_recv_data; // 视觉接收数据指针,初始化时返回
static SendPacket_t vision_send_data; // 视觉发送数据
//自瞄相关信息
static Trajectory_Type_t trajectory_cal;
static Aim_Select_Type_t aim_select;
static uint32_t no_find_cnt; // 未发现目标计数
static uint8_t auto_aim_flag = 0; //辅助瞄准标志位 视野内有目标开启 目标丢失关闭
static Publisher_t *gimbal_cmd_pub; // 云台控制消息发布者
static Subscriber_t *gimbal_feed_sub; // 云台反馈信息订阅者
static Gimbal_Ctrl_Cmd_s gimbal_cmd_send; // 传递给云台的控制信息
static Gimbal_Upload_Data_s gimbal_fetch_data; // 从云台获取的反馈信息
static Publisher_t *shoot_cmd_pub; // 发射控制消息发布者
static Subscriber_t *shoot_feed_sub; // 发射反馈信息订阅者
static Shoot_Ctrl_Cmd_s shoot_cmd_send; // 传递给发射的控制信息
static Shoot_Upload_Data_s shoot_fetch_data; // 从发射获取的反馈信息
static Robot_Status_e robot_state; // 机器人整体工作状态
static referee_info_t *referee_data; // 用于获取裁判系统的数据
static Referee_Interactive_info_t ui_data; // UI数据将底盘中的数据传入此结构体的对应变量中UI会自动检测是否变化对应显示UI
void RobotCMDInit() {
rc_data = RemoteControlInit(&huart3); // 修改为对应串口,注意如果是自研板dbus协议串口需选用添加了反相器的那个
vision_recv_data = VisionInit(&huart1); // 视觉通信串口
referee_data = UITaskInit(&huart6, &ui_data); // 裁判系统初始化,会同时初始化UI
gimbal_cmd_pub = PubRegister("gimbal_cmd", sizeof(Gimbal_Ctrl_Cmd_s));
gimbal_feed_sub = SubRegister("gimbal_feed", sizeof(Gimbal_Upload_Data_s));
shoot_cmd_pub = PubRegister("shoot_cmd", sizeof(Shoot_Ctrl_Cmd_s));
shoot_feed_sub = SubRegister("shoot_feed", sizeof(Shoot_Upload_Data_s));
#ifdef ONE_BOARD // 双板兼容
chassis_cmd_pub = PubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
chassis_feed_sub = SubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
#endif // ONE_BOARD
#ifdef GIMBAL_BOARD
CANComm_Init_Config_s comm_conf = {
.can_config = {
.can_handle = &hcan1,
.tx_id = 0x312,
.rx_id = 0x311,
},
.recv_data_len = sizeof(Chassis_Upload_Data_s),
.send_data_len = sizeof(Chassis_Ctrl_Cmd_s),
};
cmd_can_comm = CANCommInit(&comm_conf);
#endif // GIMBAL_BOARD
CANComm_Init_Config_s comm_conf = {
.can_config = {
.can_handle = &hcan1,
.tx_id = 0x312,
.rx_id = 0x311,
},
.recv_data_len = sizeof(Gimbal_Upload_Data_s),
.send_data_len = sizeof(Gimbal_Ctrl_Cmd_s),
};
cmd_can_comm = CANCommInit(&comm_conf);
gimbal_cmd_send.pitch = PITCH_SCAN;
gimbal_cmd_send.yaw = 0;
robot_state = ROBOT_READY; // 启动时机器人进入工作模式,后续加入所有应用初始化完成之后再进入
}
/**
* @brief 根据gimbal app传回的当前电机角度计算和零位的误差
* 单圈绝对角度的范围是0~360,说明文档中有图示
*
*/
static void CalcOffsetAngle() {
// 别名angle提高可读性,不然太长了不好看,虽然基本不会动这个函数
//如果大yaw轴电机不在线 不计算底盘跟随
if (gimbal_fetch_data.big_yaw_online == 0) {
chassis_cmd_send.offset_angle = 0;
return;
}
static float angle;
angle = gimbal_fetch_data.yaw_motor_single_round_angle; // 从云台获取的当前yaw电机单圈角度
#if 0 // 如果大于180度
if (angle > YAW_ALIGN_ANGLE && angle <= 180.0f + YAW_ALIGN_ANGLE)
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE;
else if (angle > 180.0f + YAW_ALIGN_ANGLE)
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE - 360.0f;
else
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE;
#else // 小于180度
if (angle > YAW_ALIGN_ANGLE)
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE;
else if (angle <= YAW_ALIGN_ANGLE && angle >= YAW_ALIGN_ANGLE - 180.0f)
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE;
else
chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE + 360.0f;
#endif
}
/**
* @brief 控制输入为遥控器(调试时)的模式和控制量设置
*
*/
static void RemoteControlSet() {
// 控制底盘和云台运行模式,云台待添加,云台是否始终使用IMU数据?
if (switch_is_down(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[下],小陀螺
{
chassis_cmd_send.chassis_mode = CHASSIS_ROTATE;
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
} else if (switch_is_mid(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[中],底盘跟随云台
{
chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW;
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
}
// 云台参数,确定云台控制数据
if (switch_is_mid(rc_data[TEMP].rc.switch_left))
// (vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0
// && vision_recv_data->vx == 0 && vision_recv_data->vy == 0 &&
// vision_recv_data->vz == 0)) // 左侧开关状态为[中],或视觉未识别到目标,纯遥控器拨杆控制
{
// 待添加,视觉会发来和目标的误差,同样将其转化为total angle的增量进行控制
// ...
gimbal_cmd_send.yaw -= 0.0005f * (float) rc_data[TEMP].rc.rocker_l_;
gimbal_cmd_send.big_yaw -= 0.0005f * (float) rc_data[TEMP].rc.rocker_l_;
gimbal_cmd_send.pitch -= 0.0005f * (float) rc_data[TEMP].rc.rocker_l1;
if (gimbal_cmd_send.pitch >= PITCH_MAX_ANGLE) gimbal_cmd_send.pitch = PITCH_MAX_ANGLE;
if (gimbal_cmd_send.pitch <= PITCH_MIN_ANGLE) gimbal_cmd_send.pitch = PITCH_MIN_ANGLE;
}
//左侧开关状态为[下],视觉模式
if (switch_is_down(rc_data[TEMP].rc.switch_left)) {
gimbal_cmd_send.control_mode = TEST_CONTROL;
trajectory_cal.v0 = 25; //弹速30
if (vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0
&& vision_recv_data->vx == 0 && vision_recv_data->vy == 0 && vision_recv_data->vz == 0) {
aim_select.suggest_fire = 0;
//未发现目标
no_find_cnt++;
if (no_find_cnt >= 200) {
//gimbal_scan_flag = 1;
//auto_aim_flag = 0;
}
//else
//auto_aim_flag = 1;
} else {
//弹道解算
no_find_cnt = 0;
auto_aim_flag = 1;
auto_aim(&aim_select, &trajectory_cal, vision_recv_data);
VisionSetAim(aim_select.aim_point[0], aim_select.aim_point[1], aim_select.aim_point[2]);
gimbal_cmd_send.yaw = trajectory_cal.cmd_yaw * 180 / PI;
gimbal_cmd_send.pitch = trajectory_cal.cmd_pitch * 180 / PI;
float yaw_err = fabsf(gimbal_cmd_send.yaw - gimbal_fetch_data.gimbal_imu_data.Yaw);
if (yaw_err <= 3) //3度
aim_select.suggest_fire = 1;
else
aim_select.suggest_fire = 0;
}
}
// 云台软件限位
// 底盘参数,目前没有加入小陀螺(调试似乎暂时没有必要),系数需要调整
chassis_cmd_send.vx = 0.001f * (float) rc_data[TEMP].rc.rocker_r1; // _水平方向
chassis_cmd_send.vy = -0.001f * (float) rc_data[TEMP].rc.rocker_r_; // 1数值方向
//chassis_cmd_send.wz = -0.001f * (float)rc_data[TEMP].rc.rocker_l_; // 1数值方向
// if (vision_recv_data->nav_vx != 0 || vision_recv_data->nav_vy != 0 || vision_recv_data->nav_wz != 0) {
// chassis_cmd_send.vx = vision_recv_data->nav_vx;
// chassis_cmd_send.vy = vision_recv_data->nav_vy;
// chassis_cmd_send.wz = vision_recv_data->nav_wz;
//
// }
// 发射参数
if (switch_is_up(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[上],弹舱打开
; // 弹舱舵机控制,待添加servo_motor模块,开启
else; // 弹舱舵机控制,待添加servo_motor模块,关闭
// 摩擦轮控制,拨轮向上打为负,向下为正
if (rc_data[TEMP].rc.dial < -100) // 向上超过100,打开摩擦轮
shoot_cmd_send.friction_mode = FRICTION_ON;
//gimbal_cmd_send.friction_mode = FRICTION_ON;
else
shoot_cmd_send.friction_mode = FRICTION_OFF;
//gimbal_cmd_send.friction_mode = FRICTION_OFF;
// 拨弹控制,遥控器固定为一种拨弹模式,可自行选择
if (rc_data[TEMP].rc.dial < -500)
shoot_cmd_send.load_mode = LOAD_BURSTFIRE;
//gimbal_cmd_send.load_mode = LOAD_BURSTFIRE;
else
shoot_cmd_send.load_mode = LOAD_STOP;
//gimbal_cmd_send.load_mode = LOAD_STOP;
gimbal_cmd_send.shoot_mode = shoot_cmd_send.shoot_mode;//遥控发射指令同步发送给右边
gimbal_cmd_send.load_mode = shoot_cmd_send.load_mode;//遥控发射指令同步发送给右边
gimbal_cmd_send.friction_mode = shoot_cmd_send.friction_mode;//遥控发射指令同步发送给右边
// 射频控制,固定每秒1发,后续可以根据左侧拨轮的值大小切换射频,
shoot_cmd_send.shoot_rate = SHOOT_RATE;
//检测到卡弹 拨弹盘反转
if (shoot_fetch_data.stalled_flag == 1)
shoot_cmd_send.load_mode = LOAD_REVERSE;
}
/**
* @brief 自动模式时模式和控制量设置
*
*/
static uint8_t sentry_state;
static void AutoControlSet() {
uint16_t myOutpost = 0,theirOutpost = 0;
if(referee_data->referee_id.Robot_Color == Robot_Blue)
{
myOutpost = referee_data->GameRobotHP.blue_outpost_HP;
theirOutpost = referee_data->GameRobotHP.red_outpost_HP;
}
else if(referee_data->referee_id.Robot_Color == Robot_Red)
{
myOutpost = referee_data->GameRobotHP.red_outpost_HP;
theirOutpost = referee_data->GameRobotHP.blue_outpost_HP;
}
if(myOutpost > 0)
chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW;
else
chassis_cmd_send.chassis_mode = CHASSIS_ROTATE;
chassis_cmd_send.vx = vision_recv_data->nav_vx;
chassis_cmd_send.vy = vision_recv_data->nav_vy;
//云台保持陀螺仪控制
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
static int8_t gimbal_scan_flag = 1;
static int8_t yaw_dir = 1;
static int8_t pitch_dir = 1;
//trajectory_cal.v0 = 30; //弹速30
//小云台扫描
if (gimbal_scan_flag == 1) {
if(sentry_state != 1){ //为一时进攻前哨站
gimbal_cmd_send.pitch = 0;
}else{
gimbal_cmd_send.pitch = PITCH_SCAN;
}
if (yaw_dir == 1) gimbal_cmd_send.yaw += 0.06f;
else gimbal_cmd_send.yaw -= 0.06f;
if (gimbal_fetch_data.mini_yaw_encode_angle <= YAW_MIN_ENCODE_ANGLE + 2.0f) yaw_dir = 1;
if (gimbal_fetch_data.mini_yaw_encode_angle >= YAW_MAX_ENCODE_ANGLE - 2.0f) yaw_dir = -1;
shoot_cmd_send.load_mode = LOAD_STOP;
}
trajectory_cal.v0 = 28; //弹速30
if (vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0
&& vision_recv_data->vx == 0 && vision_recv_data->vy == 0 && vision_recv_data->vz == 0) {
aim_select.suggest_fire = 0;
//未发现目标
no_find_cnt++;
if (no_find_cnt >= 200) {
gimbal_scan_flag = 1;
//auto_aim_flag = 0;
}
//else
//auto_aim_flag = 1;
} else {
//弹道解算
no_find_cnt = 0;
auto_aim_flag = 1;
auto_aim(&aim_select, &trajectory_cal, vision_recv_data);
VisionSetAim(aim_select.aim_point[0], aim_select.aim_point[1], aim_select.aim_point[2]);
float single_angle_yaw_now = gimbal_fetch_data.gimbal_imu_data.Yaw;
float diff_yaw = trajectory_cal.cmd_yaw * 180 / PI - single_angle_yaw_now;
float yaw_err = diff_yaw;
if (diff_yaw > 180)
diff_yaw -= 360;
else if (diff_yaw < -180)
diff_yaw += 360;
gimbal_cmd_send.yaw = gimbal_fetch_data.gimbal_imu_data.YawTotalAngle + diff_yaw;
gimbal_cmd_send.pitch = trajectory_cal.cmd_pitch * 180 / PI;
if (yaw_err <= 5) //3度
{
aim_select.suggest_fire = 1;
shoot_cmd_send.shoot_mode = SHOOT_ON;
shoot_cmd_send.shoot_rate = SHOOT_RATE;
shoot_cmd_send.load_mode = LOAD_BURSTFIRE;
} else {
aim_select.suggest_fire = 0;
//shoot_cmd_send.shoot_mode = SHOOT_OFF;
shoot_cmd_send.load_mode = LOAD_STOP;
}
if (gimbal_fetch_data.mini_yaw_encode_angle <= YAW_MIN_ENCODE_ANGLE + 2.0f)
gimbal_cmd_send.yaw = gimbal_fetch_data.gimbal_imu_data.YawTotalAngle;
if (gimbal_fetch_data.mini_yaw_encode_angle >= YAW_MAX_ENCODE_ANGLE - 2.0f)
gimbal_cmd_send.yaw = gimbal_fetch_data.gimbal_imu_data.YawTotalAngle;
}
// 射频控制,固定每秒1发,后续可以根据左侧拨轮的值大小切换射频,
//shoot_cmd_send.shoot_rate = 8;
//检测到卡弹 拨弹盘反转
shoot_cmd_send.friction_mode = FRICTION_ON;
if (shoot_fetch_data.stalled_flag == 1)
shoot_cmd_send.load_mode = LOAD_REVERSE;
}
/**
* @brief 紧急停止,包括遥控器左上侧拨轮打满/重要模块离线/双板通信失效等
* 停止的阈值'300'待修改成合适的值,或改为开关控制.
*
* @todo 后续修改为遥控器离线则电机停止(关闭遥控器急停),通过给遥控器模块添加daemon实现
*
*/
static void EmergencyHandler() {
// 拨轮的向下拨超过一半进入急停模式.注意向打时下拨轮是正
if (rc_data[TEMP].rc.dial > 300 || robot_state == ROBOT_STOP) // 还需添加重要应用和模块离线的判断
{
robot_state = ROBOT_STOP;
gimbal_cmd_send.gimbal_mode = GIMBAL_ZERO_FORCE;
chassis_cmd_send.chassis_mode = CHASSIS_ZERO_FORCE;
shoot_cmd_send.shoot_mode = SHOOT_OFF;
shoot_cmd_send.friction_mode = FRICTION_OFF;
shoot_cmd_send.load_mode = LOAD_STOP;
gimbal_cmd_send.control_mode = ZERO_FORCE;
LOGERROR("[CMD] emergency stop!");
}
// 遥控器右侧开关为[上],恢复正常运行
if (switch_is_up(rc_data[TEMP].rc.switch_right)) {
robot_state = ROBOT_READY;
shoot_cmd_send.shoot_mode = SHOOT_ON;
// gimbal_cmd_send.yaw = gimbal_fetch_data.gimbal_imu_data.YawTotalAngle;
// gimbal_cmd_send.big_yaw = gimbal_cmd_send.yaw;
gimbal_cmd_send.yaw = gimbal_fetch_data.big_yaw_angle;
gimbal_cmd_send.big_yaw = gimbal_fetch_data.big_yaw_angle;
LOGINFO("[CMD] reinstate, robot ready");
}
}
uint8_t sentry_behave();
uint8_t sentry_behave_RMUC();
/* 机器人核心控制任务,200Hz频率运行(必须高于视觉发送频率) */
static uint8_t cool_down;
void RobotCMDTask() {
// 从其他应用获取回传数据
#ifdef ONE_BOARD
SubGetMessage(chassis_feed_sub, (void *) &chassis_fetch_data);
#endif // ONE_BOARD
#ifdef GIMBAL_BOARD
chassis_fetch_data = *(Chassis_Upload_Data_s *)CANCommGet(cmd_can_comm);
#endif // GIMBAL_BOARD
SubGetMessage(shoot_feed_sub, &shoot_fetch_data);
SubGetMessage(gimbal_feed_sub, &gimbal_fetch_data);
// 根据gimbal的反馈值计算云台和底盘正方向的夹角,不需要传参,通过static私有变量完成
CalcOffsetAngle();
// 根据遥控器左侧开关,确定当前使用的控制模式为遥控器调试还是键鼠
static control_mode_e last_gimbal_mode = 0;
if (robot_state != ROBOT_STOP && rc_data[TEMP].rc.dial < 300) {
if (switch_is_up(rc_data[TEMP].rc.switch_left)) // 遥控器左侧开关状态为[上],自动模式
{
gimbal_cmd_send.control_mode = AUTO_CONTROL;
AutoControlSet();
} else {
if (last_gimbal_mode == AUTO_CONTROL) {
gimbal_cmd_send.yaw = gimbal_fetch_data.big_yaw_angle;
gimbal_cmd_send.pitch = 0;
}
gimbal_cmd_send.control_mode = RC_CONTROL;
RemoteControlSet();
}
}
EmergencyHandler(); // 处理模块离线和遥控器急停等紧急情况
gimbal_cmd_send.enemy_color = !referee_data->referee_id.Robot_Color;
gimbal_cmd_send.rest_heat = referee_data->PowerHeatData.shooter_17mm_2_barrel_heat;
last_gimbal_mode = gimbal_cmd_send.control_mode;
//热量控制
if (referee_data->PowerHeatData.shooter_17mm_1_barrel_heat > 350)
shoot_cmd_send.load_mode = LOAD_STOP;
if (referee_data->PowerHeatData.shooter_17mm_1_barrel_heat > 350){
cool_down = 1; //进入冷却状态
}else if(referee_data->PowerHeatData.shooter_17mm_1_barrel_heat < 100){
cool_down = 0; //退出冷却状态
}
if(cool_down){
shoot_cmd_send.shoot_rate = MIN_SHOOT_RATE;
}
// chassis_feedback_data.enemy_color = !referee_data->referee_id.Robot_Color;
// // 当前只做了17mm热量的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况
// //chassis_feedback_data.bullet_speed = referee_data->GameRobotState.shooter_id1_17mm_speed_limit;
// chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0;
// chassis_feedback_data.game_progress = referee_data->GameState.game_progress;
// chassis_feedback_data.remain_HP = referee_data->GameRobotState.current_HP;
// 设置视觉发送数据,还需增加加速度和角速度数据
// VisionSetFlag(chassis_fetch_data.enemy_color,,chassis_fetch_data.bullet_speed)
// if (referee_data->GameState.game_progress == 4) {
// if (referee_data->GameState.stage_remain_time >= (300 - 60))
// sentry_state = 1;//前一分钟
// else if (referee_data->GameState.stage_remain_time <= 60)
// sentry_state = 3;//后一分钟
// else
// sentry_state = 2;//中间阶段
// }
//
// gimbal_cmd_send.game_state = sentry_state;
//对抗赛版本决策
sentry_state = sentry_behave_RMUC();
static float target_x,target_y;
if(referee_data->map_command.cmd_keyboard == 'G')
{
//蓝方启动区中心为原点 28 - 6*2
target_x = -(referee_data->map_command.target_position_x - 22.10f); // 参考原点为红方启动区中心 //x正方向为蓝方基地方向
target_y = -(referee_data->map_command.target_position_y - 8.10f) + 1.6f; //y正方向为红方飞镖闸门侧 //ros 为右手系
}
VisionSetFlag(!referee_data->referee_id.Robot_Color, sentry_state, target_x, target_y);
// 推送消息,双板通信,视觉通信等
// 其他应用所需的控制数据在remotecontrolsetmode和mousekeysetmode中完成设置
#ifdef ONE_BOARD
PubPushMessage(chassis_cmd_pub, (void *) &chassis_cmd_send);
#endif // ONE_BOARD
#ifdef GIMBAL_BOARD
CANCommSend(cmd_can_comm, (void *)&chassis_cmd_send);
#endif // GIMBAL_BOARD
CANCommSend(cmd_can_comm, (void *) &gimbal_cmd_send); //哨兵左右云台双板通信
PubPushMessage(shoot_cmd_pub, (void *) &shoot_cmd_send);
PubPushMessage(gimbal_cmd_pub, (void *) &gimbal_cmd_send);
// VisionSend(&vision_send_data);
}
uint8_t sentry_behave() {
static uint8_t behave_flag = 0;
static uint8_t last_behave_flag = 0;
static uint8_t recover_cnt = 0;
// 比赛阶段 0准备阶段 1前1分钟 2中间阶段 3后一分钟 4比赛结束 9补给区回血 10保留无响应
// 0 未开始 1 进攻点1 2 进攻点2 3 不动 4 回初始点 9补血
if (referee_data->GameState.game_progress < 4)
behave_flag = 0;
else if (referee_data->GameState.game_progress == 4) {
if (referee_data->GameState.stage_remain_time >= (420 - 60))
behave_flag = 1;//前一分钟
else if (referee_data->GameState.stage_remain_time <= 60)
behave_flag = 3;//后一分钟
else
behave_flag = 2;//中间阶段
} else if (referee_data->GameState.game_progress == 5)
behave_flag = 4;
if (referee_data->GameRobotState.current_HP < 200 && referee_data->GameState.stage_remain_time >= 60) {
behave_flag = 9;
}
static uint16_t last_HP = 600;
static uint16_t recover_start_T = 0;
if (behave_flag == 9) //回去回血了
{
if (last_behave_flag != 9) {
recover_start_T = referee_data->GameState.stage_remain_time;
recover_cnt++;
}
if ((referee_data->GameState.stage_remain_time - recover_start_T) > 10)
behave_flag = 10;//随便给一个值
}
last_behave_flag = behave_flag;
return behave_flag;
}
uint8_t sentry_behave_RMUC()
{
uint8_t behave_flag = 0;
uint16_t myOutpost,theirOutpost;
if(referee_data->referee_id.Robot_Color == Robot_Blue)
{
myOutpost = referee_data->GameRobotHP.blue_outpost_HP;
theirOutpost = referee_data->GameRobotHP.red_outpost_HP;
}
else if(referee_data->referee_id.Robot_Color == Robot_Red)
{
myOutpost = referee_data->GameRobotHP.red_outpost_HP;
theirOutpost = referee_data->GameRobotHP.blue_outpost_HP;
}
uint16_t allowance = referee_data->projectile_allowance.projectile_allowance_17mm;
// 准备阶段
if (referee_data->GameState.game_progress < 4)
behave_flag = 0;
else if(referee_data->GameState.game_progress == 4)
{
if( theirOutpost>0 && myOutpost>400)
behave_flag = 1; //打前哨站
if( theirOutpost<=0 || myOutpost<=400 || allowance <= 0)
behave_flag = 2; //回巡逻站
// if(referee_data->GameRobotState.current_HP <= 100)
// behave_flag = 9; //回补给区
}
// 比赛结束
else if (referee_data->GameState.game_progress == 5)
behave_flag = 4;
return behave_flag;
}