// app #include "robot_def.h" #include "robot_cmd.h" // module #include "remote_control.h" #include "ins_task.h" #include "master_process.h" #include "message_center.h" #include "general_def.h" #include "dji_motor.h" #include "DM4310.h" #include "auto_aim.h" #include "referee_task.h" // bsp #include "bsp_dwt.h" #include "bsp_log.h" // 私有宏,自动将编码器转换成角度值 #define YAW_ALIGN_ANGLE 248.0F //(YAW_CHASSIS_ALIGN_ECD * ECD_ANGLE_COEF_DJI) // 对齐时的角度,0-360 #define PTICH_HORIZON_ANGLE (PITCH_HORIZON_ECD * ECD_ANGLE_COEF_DJI) // pitch水平时电机的角度,0-360 #define PITCH_SCAN -10.0f //扫描阶段PITCH固定角度 #define SHOOT_RATE 10.0f //射频 /* cmd应用包含的模块实例指针和交互信息存储*/ #ifdef GIMBAL_BOARD // 对双板的兼容,条件编译 #include "can_comm.h" static CANCommInstance *cmd_can_comm; // 双板通信 #endif #ifdef ONE_BOARD static Publisher_t *chassis_cmd_pub; // 底盘控制消息发布者 static Subscriber_t *chassis_feed_sub; // 底盘反馈信息订阅者 #endif // ONE_BOARD #include "can_comm.h" static CANCommInstance *cmd_can_comm; //哨兵左右云台 双板通信 static Chassis_Ctrl_Cmd_s chassis_cmd_send; // 发送给底盘应用的信息,包括控制信息和UI绘制相关 static Chassis_Upload_Data_s chassis_fetch_data; // 从底盘应用接收的反馈信息信息,底盘功率枪口热量与底盘运动状态等 static RC_ctrl_t *rc_data; // 遥控器数据,初始化时返回 static RecievePacket_t *vision_recv_data; // 视觉接收数据指针,初始化时返回 static SendPacket_t vision_send_data; // 视觉发送数据 //自瞄相关信息 static Trajectory_Type_t trajectory_cal; static Aim_Select_Type_t aim_select; static uint32_t no_find_cnt; // 未发现目标计数 static uint8_t auto_aim_flag = 0; //辅助瞄准标志位 视野内有目标开启 目标丢失关闭 static Publisher_t *gimbal_cmd_pub; // 云台控制消息发布者 static Subscriber_t *gimbal_feed_sub; // 云台反馈信息订阅者 static Gimbal_Ctrl_Cmd_s gimbal_cmd_send; // 传递给云台的控制信息 static Gimbal_Upload_Data_s gimbal_fetch_data; // 从云台获取的反馈信息 static Publisher_t *shoot_cmd_pub; // 发射控制消息发布者 static Subscriber_t *shoot_feed_sub; // 发射反馈信息订阅者 static Shoot_Ctrl_Cmd_s shoot_cmd_send; // 传递给发射的控制信息 static Shoot_Upload_Data_s shoot_fetch_data; // 从发射获取的反馈信息 static Robot_Status_e robot_state; // 机器人整体工作状态 static referee_info_t* referee_data; // 用于获取裁判系统的数据 static Referee_Interactive_info_t ui_data; // UI数据,将底盘中的数据传入此结构体的对应变量中,UI会自动检测是否变化,对应显示UI void RobotCMDInit() { rc_data = RemoteControlInit(&huart3); // 修改为对应串口,注意如果是自研板dbus协议串口需选用添加了反相器的那个 vision_recv_data = VisionInit(&huart1); // 视觉通信串口 referee_data = UITaskInit(&huart6,&ui_data); // 裁判系统初始化,会同时初始化UI gimbal_cmd_pub = PubRegister("gimbal_cmd", sizeof(Gimbal_Ctrl_Cmd_s)); gimbal_feed_sub = SubRegister("gimbal_feed", sizeof(Gimbal_Upload_Data_s)); shoot_cmd_pub = PubRegister("shoot_cmd", sizeof(Shoot_Ctrl_Cmd_s)); shoot_feed_sub = SubRegister("shoot_feed", sizeof(Shoot_Upload_Data_s)); #ifdef ONE_BOARD // 双板兼容 chassis_cmd_pub = PubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s)); chassis_feed_sub = SubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s)); #endif // ONE_BOARD #ifdef GIMBAL_BOARD CANComm_Init_Config_s comm_conf = { .can_config = { .can_handle = &hcan1, .tx_id = 0x312, .rx_id = 0x311, }, .recv_data_len = sizeof(Chassis_Upload_Data_s), .send_data_len = sizeof(Chassis_Ctrl_Cmd_s), }; cmd_can_comm = CANCommInit(&comm_conf); #endif // GIMBAL_BOARD CANComm_Init_Config_s comm_conf = { .can_config = { .can_handle = &hcan1, .tx_id = 0x312, .rx_id = 0x311, }, .recv_data_len = sizeof(Gimbal_Upload_Data_s), .send_data_len = sizeof(Gimbal_Ctrl_Cmd_s), }; cmd_can_comm = CANCommInit(&comm_conf); gimbal_cmd_send.pitch = PITCH_SCAN; gimbal_cmd_send.yaw = 0; robot_state = ROBOT_READY; // 启动时机器人进入工作模式,后续加入所有应用初始化完成之后再进入 } /** * @brief 根据gimbal app传回的当前电机角度计算和零位的误差 * 单圈绝对角度的范围是0~360,说明文档中有图示 * */ static void CalcOffsetAngle() { // 别名angle提高可读性,不然太长了不好看,虽然基本不会动这个函数 //如果大yaw轴电机不在线 不计算底盘跟随 if (gimbal_fetch_data.big_yaw_online == 0) { chassis_cmd_send.offset_angle = 0; return; } static float angle; angle = gimbal_fetch_data.yaw_motor_single_round_angle; // 从云台获取的当前yaw电机单圈角度 #if 0 // 如果大于180度 if (angle > YAW_ALIGN_ANGLE && angle <= 180.0f + YAW_ALIGN_ANGLE) chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE; else if (angle > 180.0f + YAW_ALIGN_ANGLE) chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE - 360.0f; else chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE; #else // 小于180度 if (angle > YAW_ALIGN_ANGLE) chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE; else if (angle <= YAW_ALIGN_ANGLE && angle >= YAW_ALIGN_ANGLE - 180.0f) chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE; else chassis_cmd_send.offset_angle = angle - YAW_ALIGN_ANGLE + 360.0f; #endif } /** * @brief 控制输入为遥控器(调试时)的模式和控制量设置 * */ static void RemoteControlSet() { // 控制底盘和云台运行模式,云台待添加,云台是否始终使用IMU数据? if (switch_is_down(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[下],小陀螺 { chassis_cmd_send.chassis_mode = CHASSIS_ROTATE; gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE; } else if (switch_is_mid(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[中],底盘跟随云台 { chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW; gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE; } // 云台参数,确定云台控制数据 if (switch_is_mid(rc_data[TEMP].rc.switch_left)) // (vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0 // && vision_recv_data->vx == 0 && vision_recv_data->vy == 0 && // vision_recv_data->vz == 0)) // 左侧开关状态为[中],或视觉未识别到目标,纯遥控器拨杆控制 { // 待添加,视觉会发来和目标的误差,同样将其转化为total angle的增量进行控制 // ... gimbal_cmd_send.yaw -= 0.0005f * (float) rc_data[TEMP].rc.rocker_l_; gimbal_cmd_send.big_yaw -= 0.0005f * (float) rc_data[TEMP].rc.rocker_l_; gimbal_cmd_send.pitch -= 0.001f * (float) rc_data[TEMP].rc.rocker_l1; if (gimbal_cmd_send.pitch >= PITCH_MAX_ANGLE) gimbal_cmd_send.pitch = PITCH_MAX_ANGLE; if (gimbal_cmd_send.pitch <= PITCH_MIN_ANGLE) gimbal_cmd_send.pitch = PITCH_MIN_ANGLE; } //左侧开关状态为[下],视觉模式 if (switch_is_down(rc_data[TEMP].rc.switch_left)) { gimbal_cmd_send.control_mode = TEST_CONTROL; trajectory_cal.v0 = 28; //弹速30 if (vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0 && vision_recv_data->vx == 0 && vision_recv_data->vy == 0 && vision_recv_data->vz == 0) { aim_select.suggest_fire = 0; //未发现目标 no_find_cnt++; if (no_find_cnt >= 200) { //gimbal_scan_flag = 1; //auto_aim_flag = 0; } //else //auto_aim_flag = 1; } else { //弹道解算 no_find_cnt = 0; auto_aim_flag = 1; auto_aim(&aim_select, &trajectory_cal, vision_recv_data); VisionSetAim(aim_select.aim_point[0], aim_select.aim_point[1], aim_select.aim_point[2]); gimbal_cmd_send.yaw = trajectory_cal.cmd_yaw * 180 / PI; gimbal_cmd_send.pitch = trajectory_cal.cmd_pitch * 180 / PI; float yaw_err = fabsf(trajectory_cal.cmd_yaw - gimbal_cmd_send.yaw); if (yaw_err <= 0.008) //3度 aim_select.suggest_fire = 1; else aim_select.suggest_fire = 0; } } // 云台软件限位 // 底盘参数,目前没有加入小陀螺(调试似乎暂时没有必要),系数需要调整 chassis_cmd_send.vx = 0.001f * (float) rc_data[TEMP].rc.rocker_r1; // _水平方向 chassis_cmd_send.vy = -0.001f * (float) rc_data[TEMP].rc.rocker_r_; // 1数值方向 //chassis_cmd_send.wz = -0.001f * (float)rc_data[TEMP].rc.rocker_l_; // 1数值方向 // if (vision_recv_data->nav_vx != 0 || vision_recv_data->nav_vy != 0 || vision_recv_data->nav_wz != 0) { // chassis_cmd_send.vx = vision_recv_data->nav_vx; // chassis_cmd_send.vy = vision_recv_data->nav_vy; // chassis_cmd_send.wz = vision_recv_data->nav_wz; // // } // 发射参数 if (switch_is_up(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[上],弹舱打开 ; // 弹舱舵机控制,待添加servo_motor模块,开启 else; // 弹舱舵机控制,待添加servo_motor模块,关闭 // 摩擦轮控制,拨轮向上打为负,向下为正 if (rc_data[TEMP].rc.dial < -100) // 向上超过100,打开摩擦轮 shoot_cmd_send.friction_mode = FRICTION_ON; //gimbal_cmd_send.friction_mode = FRICTION_ON; else shoot_cmd_send.friction_mode = FRICTION_OFF; //gimbal_cmd_send.friction_mode = FRICTION_OFF; // 拨弹控制,遥控器固定为一种拨弹模式,可自行选择 if (rc_data[TEMP].rc.dial < -500) shoot_cmd_send.load_mode = LOAD_BURSTFIRE; //gimbal_cmd_send.load_mode = LOAD_BURSTFIRE; else shoot_cmd_send.load_mode = LOAD_STOP; //gimbal_cmd_send.load_mode = LOAD_STOP; gimbal_cmd_send.shoot_mode = shoot_cmd_send.shoot_mode;//遥控发射指令同步发送给右边 gimbal_cmd_send.load_mode = shoot_cmd_send.load_mode;//遥控发射指令同步发送给右边 gimbal_cmd_send.friction_mode = shoot_cmd_send.friction_mode;//遥控发射指令同步发送给右边 // 射频控制,固定每秒1发,后续可以根据左侧拨轮的值大小切换射频, shoot_cmd_send.shoot_rate = SHOOT_RATE; //检测到卡弹 拨弹盘反转 if (shoot_fetch_data.stalled_flag == 1) shoot_cmd_send.load_mode = LOAD_REVERSE; } /** * @brief 自动模式时模式和控制量设置 * */ static uint8_t sentry_state; static void AutoControlSet() { chassis_cmd_send.chassis_mode = CHASSIS_ROTATE; // chassis_cmd_send.vx = vision_recv_data->nav_vx; // chassis_cmd_send.vy = vision_recv_data->nav_vy; //云台保持陀螺仪控制 gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE; static int8_t gimbal_scan_flag = 1; static int8_t yaw_dir = 1; static int8_t pitch_dir = 1; //trajectory_cal.v0 = 30; //弹速30 //小云台扫描 if (gimbal_scan_flag == 1) { gimbal_cmd_send.pitch = PITCH_SCAN; //if(sentry_state > 1) { if (yaw_dir == 1) gimbal_cmd_send.yaw += 0.06f; else gimbal_cmd_send.yaw -= 0.06f; if (gimbal_fetch_data.mini_yaw_encode_angle <= YAW_MIN_ENCODE_ANGLE + 2.0f) yaw_dir = 1; if (gimbal_fetch_data.mini_yaw_encode_angle >= YAW_MAX_ENCODE_ANGLE - 2.0f) yaw_dir = -1; } shoot_cmd_send.load_mode = LOAD_STOP; } trajectory_cal.v0 = 35; //弹速30 if (vision_recv_data->x == 0 && vision_recv_data->y == 0 && vision_recv_data->z == 0 && vision_recv_data->vx == 0 && vision_recv_data->vy == 0 && vision_recv_data->vz == 0) { aim_select.suggest_fire = 0; //未发现目标 no_find_cnt++; if (no_find_cnt >= 200) { //gimbal_scan_flag = 1; //auto_aim_flag = 0; } //else //auto_aim_flag = 1; } else { //弹道解算 no_find_cnt = 0; auto_aim_flag = 1; auto_aim(&aim_select, &trajectory_cal, vision_recv_data); VisionSetAim(aim_select.aim_point[0], aim_select.aim_point[1], aim_select.aim_point[2]); gimbal_cmd_send.yaw = trajectory_cal.cmd_yaw * 180 / PI; gimbal_cmd_send.pitch = trajectory_cal.cmd_pitch * 180 / PI; float yaw_err = fabsf(gimbal_cmd_send.yaw - gimbal_fetch_data.gimbal_imu_data.Yaw); if (yaw_err <= 5) //3度 { aim_select.suggest_fire = 1; shoot_cmd_send.shoot_mode = SHOOT_ON; shoot_cmd_send.shoot_rate = SHOOT_RATE; shoot_cmd_send.load_mode = LOAD_BURSTFIRE; } else { aim_select.suggest_fire = 0; //shoot_cmd_send.shoot_mode = SHOOT_OFF; shoot_cmd_send.load_mode = LOAD_STOP; } //摩擦轮始终开启 shoot_cmd_send.friction_mode = FRICTION_ON; } // 射频控制,固定每秒1发,后续可以根据左侧拨轮的值大小切换射频, //shoot_cmd_send.shoot_rate = 8; //检测到卡弹 拨弹盘反转 shoot_cmd_send.friction_mode = FRICTION_ON; if (shoot_fetch_data.stalled_flag == 1) shoot_cmd_send.load_mode = LOAD_REVERSE; } /** * @brief 紧急停止,包括遥控器左上侧拨轮打满/重要模块离线/双板通信失效等 * 停止的阈值'300'待修改成合适的值,或改为开关控制. * * @todo 后续修改为遥控器离线则电机停止(关闭遥控器急停),通过给遥控器模块添加daemon实现 * */ static void EmergencyHandler() { // 拨轮的向下拨超过一半进入急停模式.注意向打时下拨轮是正 if (rc_data[TEMP].rc.dial > 300 || robot_state == ROBOT_STOP) // 还需添加重要应用和模块离线的判断 { robot_state = ROBOT_STOP; gimbal_cmd_send.gimbal_mode = GIMBAL_ZERO_FORCE; chassis_cmd_send.chassis_mode = CHASSIS_ZERO_FORCE; shoot_cmd_send.shoot_mode = SHOOT_OFF; shoot_cmd_send.friction_mode = FRICTION_OFF; shoot_cmd_send.load_mode = LOAD_STOP; gimbal_cmd_send.control_mode = ZERO_FORCE; LOGERROR("[CMD] emergency stop!"); } // 遥控器右侧开关为[上],恢复正常运行 if (switch_is_up(rc_data[TEMP].rc.switch_right)) { robot_state = ROBOT_READY; shoot_cmd_send.shoot_mode = SHOOT_ON; LOGINFO("[CMD] reinstate, robot ready"); } } uint8_t sentry_behave(); /* 机器人核心控制任务,200Hz频率运行(必须高于视觉发送频率) */ void RobotCMDTask() { // 从其他应用获取回传数据 #ifdef ONE_BOARD SubGetMessage(chassis_feed_sub, (void *) &chassis_fetch_data); #endif // ONE_BOARD #ifdef GIMBAL_BOARD chassis_fetch_data = *(Chassis_Upload_Data_s *)CANCommGet(cmd_can_comm); #endif // GIMBAL_BOARD SubGetMessage(shoot_feed_sub, &shoot_fetch_data); SubGetMessage(gimbal_feed_sub, &gimbal_fetch_data); // 根据gimbal的反馈值计算云台和底盘正方向的夹角,不需要传参,通过static私有变量完成 CalcOffsetAngle(); // 根据遥控器左侧开关,确定当前使用的控制模式为遥控器调试还是键鼠 static control_mode_e last_gimbal_mode = 0; if (switch_is_up(rc_data[TEMP].rc.switch_left)) // 遥控器左侧开关状态为[上],自动模式 { gimbal_cmd_send.control_mode = AUTO_CONTROL; AutoControlSet(); } else { if (last_gimbal_mode == AUTO_CONTROL) { gimbal_cmd_send.yaw = 0; gimbal_cmd_send.pitch = 0; } gimbal_cmd_send.control_mode = RC_CONTROL; RemoteControlSet(); } gimbal_cmd_send.enemy_color = !referee_data->referee_id.Robot_Color; gimbal_cmd_send.rest_heat = referee_data->PowerHeatData.shooter_17mm_2_barrel_heat; last_gimbal_mode = gimbal_cmd_send.control_mode; //热量控制 if(referee_data->PowerHeatData.shooter_17mm_1_barrel_heat>350) shoot_cmd_send.load_mode = LOAD_STOP; EmergencyHandler(); // 处理模块离线和遥控器急停等紧急情况 // chassis_feedback_data.enemy_color = !referee_data->referee_id.Robot_Color; // // 当前只做了17mm热量的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况 // //chassis_feedback_data.bullet_speed = referee_data->GameRobotState.shooter_id1_17mm_speed_limit; // chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0; // chassis_feedback_data.game_progress = referee_data->GameState.game_progress; // chassis_feedback_data.remain_HP = referee_data->GameRobotState.current_HP; // 设置视觉发送数据,还需增加加速度和角速度数据 // VisionSetFlag(chassis_fetch_data.enemy_color,,chassis_fetch_data.bullet_speed) //sentry_state = sentry_behave(); if(referee_data->GameState.game_progress == 4) { if(referee_data->GameState.stage_remain_time >= (300-60)) sentry_state = 1;//前一分钟 else if(referee_data->GameState.stage_remain_time <= 60) sentry_state = 3;//后一分钟 else sentry_state = 2;//中间阶段 } gimbal_cmd_send.game_state = sentry_state; VisionSetFlag(!referee_data->referee_id.Robot_Color,sentry_state,referee_data->GameRobotState.current_HP); // 推送消息,双板通信,视觉通信等 // 其他应用所需的控制数据在remotecontrolsetmode和mousekeysetmode中完成设置 #ifdef ONE_BOARD PubPushMessage(chassis_cmd_pub, (void *) &chassis_cmd_send); #endif // ONE_BOARD #ifdef GIMBAL_BOARD CANCommSend(cmd_can_comm, (void *)&chassis_cmd_send); #endif // GIMBAL_BOARD CANCommSend(cmd_can_comm, (void *) &gimbal_cmd_send); //哨兵左右云台双板通信 PubPushMessage(shoot_cmd_pub, (void *) &shoot_cmd_send); PubPushMessage(gimbal_cmd_pub, (void *) &gimbal_cmd_send); VisionSend(&vision_send_data); } uint8_t sentry_behave() { static uint8_t behave_flag = 0; static uint8_t last_behave_flag = 0; static uint8_t recover_cnt = 0; // 比赛阶段 0准备阶段 1前1分钟 2中间阶段 3后一分钟 4比赛结束 9补给区回血 10保留(无响应) if(referee_data->GameState.game_progress < 4) behave_flag = 0; else if(referee_data->GameState.game_progress == 4) { if(referee_data->GameState.stage_remain_time >= (300-60)) behave_flag = 1;//前一分钟 else if(referee_data->GameState.stage_remain_time <= 60) behave_flag = 3;//后一分钟 else behave_flag = 2;//中间阶段 } else if (referee_data->GameState.game_progress == 5) behave_flag = 4; if(referee_data->GameRobotState.current_HP < 200 && referee_data->GameState.stage_remain_time >= 60 && recover_cnt <= 1) { behave_flag = 9; } static uint16_t last_HP = 600; static uint16_t recover_start_T = 0; if(behave_flag == 9 ) //回去回血了 { if(last_behave_flag != 9) { recover_start_T = referee_data->GameState.stage_remain_time; recover_cnt ++ ; } if((referee_data->GameState.stage_remain_time - recover_start_T)>10) behave_flag = 10;//随便给一个值 } last_behave_flag = behave_flag; return behave_flag; }