sentry_left/modules/motor/DMmotor/DM4310.c

234 lines
8.9 KiB
C
Raw Normal View History

#include "DM4310.h"
#include "memory.h"
#include "general_def.h"
#include "user_lib.h"
#include "cmsis_os.h"
#include "string.h"
#include "daemon.h"
#include "stdlib.h"
#include "bsp_log.h"
static uint8_t idx;
static DMMotorInstance *dm_motor_instance[DM_MOTOR_CNT];
static osThreadId dm_task_handle[DM_MOTOR_CNT];
/* 两个用于将uint值和float值进行映射的函数,在设定发送值和解析反馈值时使用 */
static uint16_t float_to_uint(float x, float x_min, float x_max, uint8_t bits)
{
float span = x_max - x_min;
float offset = x_min;
return (uint16_t)((x - offset) * ((float)((1 << bits) - 1)) / span);
}
static float uint_to_float(int x_int, float x_min, float x_max, int bits)
{
float span = x_max - x_min;
float offset = x_min;
return ((float)x_int) * span / ((float)((1 << bits) - 1)) + offset;
}
static void DMMotorSetMode(DMMotor_Mode_e cmd, DMMotorInstance *motor)
{
memset(motor->motor_can_instance->tx_buff, 0xff, 7); // 发送电机指令的时候前面7bytes都是0xff
motor->motor_can_instance->tx_buff[7] = (uint8_t)cmd; // 最后一位是命令id
CANTransmit(motor->motor_can_instance, 1);
}
static void DMMotorDecode(CANInstance *motor_can)
{
uint16_t tmp; // 用于暂存解析值,稍后转换成float数据,避免多次创建临时变量
uint8_t *rxbuff = motor_can->rx_buff;
DMMotorInstance *motor = (DMMotorInstance *)motor_can->id;
DM_Motor_Measure_s *measure = &(motor->measure); // 将can实例中保存的id转换成电机实例的指针
DaemonReload(motor->motor_daemon);
measure->last_position = measure->position;
tmp = (uint16_t)((rxbuff[1] << 8) | rxbuff[2]);
measure->position = uint_to_float(tmp, DM_P_MIN, DM_P_MAX, 16);
measure->angle_single_round = RAD_2_DEGREE * (measure->position + PI);
tmp = (uint16_t)((rxbuff[3] << 4) | rxbuff[4] >> 4);
measure->velocity = uint_to_float(tmp, DM_V_MIN, DM_V_MAX, 12);
tmp = (uint16_t)(((rxbuff[4] & 0x0f) << 8) | rxbuff[5]);
measure->torque = uint_to_float(tmp, DM_T_MIN, DM_T_MAX, 12);
measure->T_Mos = (float)rxbuff[6];
measure->T_Rotor = (float)rxbuff[7];
// 多圈角度计算,前提是假设两次采样间电机转过的角度小于180°,自己画个图就清楚计算过程了
if (measure->position - measure->last_position > 3.1425926)
measure->total_round--;
else if (measure->position - measure->last_position < -3.1415926)
measure->total_round++;
measure->total_angle = measure->total_round * 360 + measure->angle_single_round;
}
static void DMMotorLostCallback(void *motor_ptr)
{
DMMotorInstance *motor = (DMMotorInstance *)motor_ptr;
uint16_t can_bus = motor->motor_can_instance->can_handle == &hcan1 ? 1 : 2;
LOGWARNING("[dm_motor] Motor lost, can bus [%d] , id [%d]", can_bus, motor->motor_can_instance->tx_id);
}
void DMMotorCaliEncoder(DMMotorInstance *motor)
{
DMMotorSetMode(DM_CMD_ZERO_POSITION, motor);
DWT_Delay(0.1);
}
DMMotorInstance *DMMotorInit(Motor_Init_Config_s *config)
{
DMMotorInstance *motor = (DMMotorInstance *)malloc(sizeof(DMMotorInstance));
memset(motor, 0, sizeof(DMMotorInstance));
config->can_init_config.rx_id = config->can_init_config.rx_id;
config->can_init_config.tx_id = config->can_init_config.tx_id;
motor->motor_settings = config->controller_setting_init_config;
PIDInit(&motor->motor_controller.current_PID, &config->controller_param_init_config.current_PID);
PIDInit(&motor->motor_controller.speed_PID, &config->controller_param_init_config.speed_PID);
PIDInit(&motor->motor_controller.angle_PID, &config->controller_param_init_config.angle_PID);
motor->motor_controller.other_angle_feedback_ptr = config->controller_param_init_config.other_angle_feedback_ptr;
motor->motor_controller.other_speed_feedback_ptr = config->controller_param_init_config.other_speed_feedback_ptr;
config->can_init_config.can_module_callback = DMMotorDecode;
config->can_init_config.id = motor;
motor->motor_can_instance = CANRegister(&config->can_init_config);
Daemon_Init_Config_s conf = {
.callback = DMMotorLostCallback,
.owner_id = motor,
.reload_count = 10,
};
motor->motor_daemon = DaemonRegister(&conf);
DMMotorEnable(motor);
DMMotorSetMode(DM_CMD_MOTOR_MODE, motor);
DWT_Delay(0.1f);
dm_motor_instance[idx++] = motor;
return motor;
}
void DMMotorSetRef(DMMotorInstance *motor, float ref)
{
motor->motor_controller.pid_ref = ref;
}
void DMMotorEnable(DMMotorInstance *motor)
{
motor->stop_flag = MOTOR_ENALBED;
}
void DMMotorStop(DMMotorInstance *motor)//不使用使能模式是因为需要收到反馈
{
motor->stop_flag = MOTOR_STOP;
}
void DMMotorOuterLoop(DMMotorInstance *motor, Closeloop_Type_e type)
{
motor->motor_settings.outer_loop_type = type;
}
//还得使用力矩控制
void DMMotorTask(void const *argument)
{
float pid_ref, set, pid_measure;
DMMotorInstance *motor = (DMMotorInstance *)argument;
Motor_Controller_s *motor_controller; // 电机控制器
DM_Motor_Measure_s *measure = &motor->measure;
motor_controller = &motor->motor_controller;
Motor_Control_Setting_s *setting = &motor->motor_settings;
//CANInstance *motor_can = motor->motor_can_instance;
//uint16_t tmp;
DMMotor_Send_s motor_send_mailbox;
while (1)
{
pid_ref = motor->motor_controller.pid_ref;//保存设定值
if (setting->motor_reverse_flag == MOTOR_DIRECTION_REVERSE)
pid_ref *= -1;
// pid_ref会顺次通过被启用的闭环充当数据的载体
// 计算位置环,只有启用位置环且外层闭环为位置时会计算速度环输出
if ((setting->close_loop_type & ANGLE_LOOP) && setting->outer_loop_type == ANGLE_LOOP)
{
if (setting->angle_feedback_source == OTHER_FEED)
pid_measure = *motor_controller->other_angle_feedback_ptr;
else
pid_measure = measure->total_angle; // MOTOR_FEED,对total angle闭环,防止在边界处出现突跃
// 更新pid_ref进入下一个环
pid_ref = PIDCalculate(&motor_controller->angle_PID, pid_measure, pid_ref);
}
// 计算速度环,(外层闭环为速度或位置)且(启用速度环)时会计算速度环
if ((setting->close_loop_type & SPEED_LOOP) && (setting->outer_loop_type & (ANGLE_LOOP | SPEED_LOOP)))
{
if (setting->feedforward_flag & SPEED_FEEDFORWARD)
pid_ref += *motor_controller->speed_feedforward_ptr;
if (setting->speed_feedback_source == OTHER_FEED)
pid_measure = *motor_controller->other_speed_feedback_ptr;
else // MOTOR_FEED
pid_measure = measure->velocity;
// 更新pid_ref进入下一个环
pid_ref = PIDCalculate(&motor_controller->speed_PID, pid_measure, pid_ref);
}
if (setting->feedback_reverse_flag == FEEDBACK_DIRECTION_REVERSE)
pid_ref *= -1;
set = pid_ref;
if (motor->stop_flag == MOTOR_STOP)
set = 0;
LIMIT_MIN_MAX(set, DM_T_MIN, DM_T_MAX);
motor_send_mailbox.position_des = float_to_uint(0, DM_P_MIN, DM_P_MAX, 16);
motor_send_mailbox.velocity_des = float_to_uint(0, DM_V_MIN, DM_V_MAX, 12);
motor_send_mailbox.torque_des = float_to_uint(set, DM_T_MIN, DM_T_MAX, 12);
motor_send_mailbox.Kp = 0;//只使用力矩控制无需kpkd参数
motor_send_mailbox.Kd = 0;//只使用力矩控制无需kpkd参数
motor->motor_can_instance->tx_buff[0] = (uint8_t)(motor_send_mailbox.position_des >> 8);
motor->motor_can_instance->tx_buff[1] = (uint8_t)(motor_send_mailbox.position_des);
motor->motor_can_instance->tx_buff[2] = (uint8_t)(motor_send_mailbox.velocity_des >> 4);
motor->motor_can_instance->tx_buff[3] = (uint8_t)(((motor_send_mailbox.velocity_des & 0xF) << 4) | (motor_send_mailbox.Kp >> 8));
motor->motor_can_instance->tx_buff[4] = (uint8_t)(motor_send_mailbox.Kp);
motor->motor_can_instance->tx_buff[5] = (uint8_t)(motor_send_mailbox.Kd >> 4);
motor->motor_can_instance->tx_buff[6] = (uint8_t)(((motor_send_mailbox.Kd & 0xF) << 4) | (motor_send_mailbox.torque_des >> 8));
motor->motor_can_instance->tx_buff[7] = (uint8_t)(motor_send_mailbox.torque_des);
CANTransmit(motor->motor_can_instance, 1);
osDelay(2);
}
}
void DMMotorControlInit()
{
char dm_task_name[5] = "dm";
// 遍历所有电机实例,创建任务
if (!idx)
return;
for (size_t i = 0; i < idx; i++)
{
char dm_id_buff[2] = {0};
__itoa(i, dm_id_buff, 10);
strcat(dm_task_name, dm_id_buff);
osThreadDef(dm_task_name, DMMotorTask, osPriorityNormal, 0, 128);
dm_task_handle[i] = osThreadCreate(osThread(dm_task_name), dm_motor_instance[i]);
}
}
uint8_t DMMotorIsOnline(DMMotorInstance *motor)
{
return DaemonIsOnline(motor->daemon);
}