sentry_gimbal_hzz/modules/motor/HT04.c

165 lines
5.6 KiB
C

#include "HT04.h"
#include "memory.h"
#include "general_def.h"
static uint8_t idx;
HTMotorInstance *ht_motor_info[HT_MOTOR_CNT];
/**
* @brief
*
* @param cmd
* @param motor
*/
static void HTMotorSetMode(HTMotor_Mode_t cmd, HTMotorInstance *motor)
{
static uint8_t buf[8] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00};
buf[7] = (uint8_t)cmd;
memcpy(motor->motor_can_instace->tx_buff, buf, sizeof(buf));
CANTransmit(motor->motor_can_instace);
}
/* 两个用于将uint值和float值进行映射的函数,在设定发送值和解析反馈值时使用 */
static uint16_t float_to_uint(float x, float x_min, float x_max, uint8_t bits)
{
float span = x_max - x_min;
float offset = x_min;
return (uint16_t)((x - offset) * ((float)((1 << bits) - 1)) / span);
}
static float uint_to_float(int x_int, float x_min, float x_max, int bits)
{
float span = x_max - x_min;
float offset = x_min;
return ((float)x_int) * span / ((float)((1 << bits) - 1)) + offset;
}
/**
* @brief 解析电机反馈值
*
* @param motor_can 收到
*/
static void HTMotorDecode(CANInstance *motor_can)
{
static uint16_t tmp; // 用于暂存解析值,稍后转换成float数据,避免多次创建临时变量
static HTMotor_Measure_t *measure;
static uint8_t *rxbuff;
rxbuff = motor_can->rx_buff;
measure = &((HTMotorInstance *)motor_can->id)->motor_measure;
measure->last_angle = measure->total_angle;
tmp = (uint16_t)((rxbuff[1] << 8) | rxbuff[2]);
measure->total_angle = RAD_2_ANGLE * uint_to_float(tmp, P_MIN, P_MAX, 16);
tmp = (uint16_t)((rxbuff[3] << 4) | (rxbuff[4] >> 4));
measure->speed_aps = RAD_2_ANGLE * SPEED_SMOOTH_COEF * uint_to_float(tmp, V_MIN, V_MAX, 12) +
(1 - SPEED_SMOOTH_COEF) * measure->speed_aps;
tmp = (uint16_t)(((rxbuff[4] & 0x0f) << 8) | rxbuff[5]);
measure->real_current = CURRENT_SMOOTH_COEF * uint_to_float(tmp, T_MIN, T_MAX, 12) +
(1 - CURRENT_SMOOTH_COEF) * measure->real_current;
}
HTMotorInstance *HTMotorInit(Motor_Init_Config_s *config)
{
ht_motor_info[idx] = (HTMotorInstance *)malloc(sizeof(HTMotorInstance));
memset(ht_motor_info[idx], 0, sizeof(HTMotorInstance));
ht_motor_info[idx]->motor_settings = config->controller_setting_init_config;
PID_Init(&ht_motor_info[idx]->current_PID, &config->controller_param_init_config.current_PID);
PID_Init(&ht_motor_info[idx]->speed_PID, &config->controller_param_init_config.speed_PID);
PID_Init(&ht_motor_info[idx]->angle_PID, &config->controller_param_init_config.angle_PID);
ht_motor_info[idx]->other_angle_feedback_ptr = config->controller_param_init_config.other_angle_feedback_ptr;
ht_motor_info[idx]->other_speed_feedback_ptr = config->controller_param_init_config.other_speed_feedback_ptr;
config->can_init_config.can_module_callback = HTMotorDecode;
config->can_init_config.id = ht_motor_info[idx];
ht_motor_info[idx]->motor_can_instace = CANRegister(&config->can_init_config);
HTMotorEnable(ht_motor_info[idx]);
return ht_motor_info[idx++];
}
void HTMotorSetRef(HTMotorInstance *motor, float ref)
{
motor->pid_ref = ref;
}
void HTMotorControl()
{
static float set, pid_measure, pid_ref;
static uint16_t tmp;
static HTMotorInstance *motor;
static HTMotor_Measure_t *measure;
static Motor_Control_Setting_s *setting;
static CANInstance *motor_can;
// 遍历所有电机实例,计算PID
for (size_t i = 0; i < idx; i++)
{ // 先获取地址避免反复寻址
motor = ht_motor_info[i];
measure = &motor->motor_measure;
setting = &motor->motor_settings;
motor_can = motor_can;
pid_ref = motor->pid_ref;
if ((setting->close_loop_type & ANGLE_LOOP) && setting->outer_loop_type == ANGLE_LOOP)
{
if (setting->angle_feedback_source == OTHER_FEED)
pid_measure = *motor->other_angle_feedback_ptr;
else
pid_measure = measure->real_current;
pid_ref = PID_Calculate(&motor->angle_PID, pid_measure, pid_ref);
if (setting->feedforward_flag & SPEED_FEEDFORWARD)
pid_ref += *motor->speed_feedforward_ptr;
}
if ((setting->close_loop_type & SPEED_LOOP) && setting->outer_loop_type & (ANGLE_LOOP | SPEED_LOOP))
{
if (setting->angle_feedback_source == OTHER_FEED)
pid_measure = *motor->other_speed_feedback_ptr;
else
pid_measure = measure->speed_aps;
pid_ref = PID_Calculate(&motor->angle_PID, pid_measure, pid_ref);
if (setting->feedforward_flag & CURRENT_FEEDFORWARD)
pid_ref += *motor->current_feedforward_ptr;
}
if (setting->close_loop_type & CURRENT_LOOP)
{
pid_ref = PID_Calculate(&motor->current_PID, measure->real_current, pid_ref);
}
set = pid_ref;
if (setting->reverse_flag == MOTOR_DIRECTION_REVERSE)
set *= -1;
tmp = float_to_uint(set, T_MIN, T_MAX, 12);
motor_can->tx_buff[6] = tmp >> 8;
motor_can->tx_buff[7] = tmp & 0xff;
if (motor->stop_flag == MOTOR_STOP)
{ // 若该电机处于停止状态,直接将发送buff置零
memset(motor_can->tx_buff + 6, 0, sizeof(uint16_t));
}
CANTransmit(motor_can);
}
}
void HTMotorStop(HTMotorInstance *motor)
{
HTMotorSetMode(CMD_RESET_MODE, motor);
}
void HTMotorEnable(HTMotorInstance *motor)
{
HTMotorSetMode(CMD_MOTOR_MODE, motor);
}
void HTMotorCalibEncoder(HTMotorInstance *motor)
{
HTMotorSetMode(CMD_ZERO_POSITION, motor);
}