sentry_gimbal_hzz/application/chassis/chassis.c

258 lines
9.0 KiB
C

/**
* @file chassis.c
* @author NeoZeng neozng1@hnu.edu.cn
* @brief 底盘应用,负责接收robot_cmd的控制命令并根据命令进行运动学解算,得到输出
* 注意底盘采取右手系,对于平面视图,底盘纵向运动的正前方为x正方向;横向运动的右侧为y正方向
*
* @version 0.1
* @date 2022-12-04
*
* @copyright Copyright (c) 2022
*
*/
#include "chassis.h"
#include "robot_def.h"
#include "dji_motor.h"
#include "super_cap.h"
#include "message_center.h"
#include "referee.h"
#include "general_def.h"
#include "bsp_dwt.h"
#include "arm_math.h"
/* 根据robot_def.h中的macro自动计算的参数 */
#define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f)
#define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f)
#define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI)
/* 底盘应用包含的模块和信息存储,底盘是单例模式,因此不需要为底盘建立单独的结构体 */
#ifdef CHASSIS_BOARD // 如果是底盘板,使用板载IMU获取底盘转动角速度
#include "can_comm.h"
#include "ins_task.h"
static CANCommInstance *chasiss_can_comm; // 双板通信CAN comm
IMU_Data_t *Chassis_IMU_data;
#endif // CHASSIS_BOARD
static referee_info_t *referee_data; // 裁判系统的数据
// static SuperCAP* cap; 尚未增加超级电容
static DJIMotorInstance *motor_lf; // left right forward back
static DJIMotorInstance *motor_rf;
static DJIMotorInstance *motor_lb;
static DJIMotorInstance *motor_rb;
/* chassis 包含的信息交互模块和数据*/
static Publisher_t *chassis_pub;
static Chassis_Ctrl_Cmd_s chassis_cmd_recv;
static Subscriber_t *chassis_sub;
static Chassis_Upload_Data_s chassis_feedback_data;
/* 用于自旋变速策略的时间变量,后续考虑查表加速 */
static float t;
/* 私有函数计算的中介变量,设为静态避免参数传递的开销 */
static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘
static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅
void ChassisInit()
{
// 左前轮
Motor_Init_Config_s left_foward_config = {
.can_init_config = {
.can_handle = &hcan2,
.tx_id = 1,
},
.controller_param_init_config = {
.speed_PID = {
},
.current_PID = {
},
},
.controller_setting_init_config = {
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
.outer_loop_type = SPEED_LOOP,
.close_loop_type = SPEED_LOOP | CURRENT_LOOP,
.reverse_flag = MOTOR_DIRECTION_REVERSE,
},
.motor_type = M3508};
// 右前轮
Motor_Init_Config_s right_foward_config = {
.can_init_config = {
.can_handle = &hcan2,
.tx_id = 2,
},
.controller_param_init_config = {
.speed_PID = {
},
.current_PID = {
},
},
.controller_setting_init_config = {
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
.outer_loop_type = SPEED_LOOP,
.close_loop_type = SPEED_LOOP | CURRENT_LOOP,
.reverse_flag = MOTOR_DIRECTION_REVERSE,
},
.motor_type = M3508};
// 左后轮
Motor_Init_Config_s left_back_config = {
.can_init_config = {
.can_handle = &hcan2,
.tx_id = 3,
},
.controller_param_init_config = {
.speed_PID = {
},
.current_PID = {
},
},
.controller_setting_init_config = {
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
.outer_loop_type = SPEED_LOOP,
.close_loop_type = SPEED_LOOP | CURRENT_LOOP,
.reverse_flag = MOTOR_DIRECTION_REVERSE,
},
.motor_type = M3508};
// 右后轮
Motor_Init_Config_s right_back_config = {
.can_init_config = {
.can_handle = &hcan2,
.tx_id = 4,
},
.controller_param_init_config = {
.speed_PID = {
},
.current_PID = {
},
},
.controller_setting_init_config = {
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
.outer_loop_type = SPEED_LOOP,
.close_loop_type = SPEED_LOOP | CURRENT_LOOP,
.reverse_flag = MOTOR_DIRECTION_REVERSE,
},
.motor_type = M3508};
motor_lf = DJIMotorInit(&left_foward_config);
motor_rf = DJIMotorInit(&right_foward_config);
motor_lb = DJIMotorInit(&left_back_config);
motor_rb = DJIMotorInit(&right_back_config);
referee_data = RefereeInit(&huart6);
// SupercapInit();
chassis_sub = SubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
chassis_pub = PubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
}
#define LF_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * ANGLE_2_RAD)
#define RF_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * ANGLE_2_RAD)
#define LB_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * ANGLE_2_RAD)
#define RB_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * ANGLE_2_RAD)
/**
* @brief 计算每个轮毂电机的输出,正运动学解算
* 用宏进行预替换减小开销
*/
static void MecanumCalculate()
{
vt_lf = -chassis_vx - chassis_vy - chassis_cmd_recv.wz * LF_CENTER;
vt_rf = -chassis_vx + chassis_vy - chassis_cmd_recv.wz * RF_CENTER;
vt_lb = chassis_vx + chassis_vy - chassis_cmd_recv.wz * LB_CENTER;
vt_rb = chassis_vx - chassis_vy - chassis_cmd_recv.wz * RB_CENTER;
}
/**
* @brief 根据裁判系统和电容剩余容量对输出进行限制并设置电机参考值
*
*/
static void LimitChassisOutput()
{
// 限制待添加
// referee_data->PowerHeatData.chassis_power;
// referee_data->PowerHeatData.chassis_power_buffer;
DJIMotorSetRef(motor_lf, vt_lf);
DJIMotorSetRef(motor_rf, vt_rf);
DJIMotorSetRef(motor_lb, vt_lb);
DJIMotorSetRef(motor_rb, vt_rb);
}
/**
* @brief 根据每个轮子的速度反馈,计算底盘的实际运动速度,逆运动解算
* 对于双板的情况,考虑增加来自底盘板IMU的数据
*
*/
static void EstimateSpeed()
{
// 根据电机速度和imu的速度解算
// chassis_feedback_data.vx vy wz
// ...
}
void ChassisTask()
{
// 后续增加没收到消息的处理
// 获取新的控制信息
SubGetMessage(chassis_sub, &chassis_cmd_recv);
// 根据控制模式设定旋转速度
// 后续增加不同状态的过渡模式?
switch (chassis_cmd_recv.chassis_mode)
{
case CHASSIS_ZERO_FORCE:
DJIMotorStop(motor_lf); // 如果出现重要模块离线或遥控器设置为急停,让电机停止
DJIMotorStop(motor_rf);
DJIMotorStop(motor_lb);
DJIMotorStop(motor_rb);
break;
case CHASSIS_NO_FOLLOW:
chassis_cmd_recv.wz = 0; // 底盘不旋转,但维持全向机动,一般用于调整云台姿态
break;
case CHASSIS_FOLLOW_GIMBAL_YAW:
chassis_cmd_recv.wz = 0.05f * powf(chassis_cmd_recv.wz, 2.0f); // 跟随,不单独设置pid,以误差角平方为速度输出
break;
case CHASSIS_ROTATE:
// chassis_cmd_recv.wz=sin(t) // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
break;
default:
break;
}
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
chassis_vx = chassis_cmd_recv.vx * arm_cos_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD) -
chassis_cmd_recv.vy * arm_sin_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD);
chassis_vy = chassis_cmd_recv.vx * arm_sin_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD) -
chassis_cmd_recv.vy * arm_cos_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD);
// 根据控制模式进行正运动学解算,计算底盘输出
MecanumCalculate();
// 根据裁判系统的反馈数据和电容数据对输出限幅
LimitChassisOutput();
// 根据电机的反馈速度计算
EstimateSpeed();
// 获取裁判系统数据
// 我方颜色id小于7是红色,大于7是蓝色,注意这里发送的是对方的颜色, 0:blue , 1:red
chassis_feedback_data.enemy_color = referee_data->GameRobotStat.robot_id > 7 ? 1 : 0;
// 当前只做了17mm的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况
chassis_feedback_data.bullet_speed = referee_data->GameRobotStat.shooter_id1_17mm_speed_limit;
chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0;
// 推送反馈消息
PubPushMessage(chassis_pub, &chassis_feedback_data);
}