/** ****************************************************************************** * @file QuaternionEKF.c * @author Wang Hongxi * @version V1.2.0 * @date 2022/3/8 * @brief attitude update with gyro bias estimate and chi-square test ****************************************************************************** * @attention * 1st order LPF transfer function: * 1 * ——————— * as + 1 * ****************************************************************************** */ #include "QuaternionEKF.h" QEKF_INS_t QEKF_INS; const float IMU_QuaternionEKF_F[36] = {1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1}; float IMU_QuaternionEKF_P[36] = {100000, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 100000, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 100000, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 100000, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 100, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 100}; float IMU_QuaternionEKF_K[18]; float IMU_QuaternionEKF_H[18]; static float invSqrt(float x); static void IMU_QuaternionEKF_Observe(KalmanFilter_t *kf); static void IMU_QuaternionEKF_F_Linearization_P_Fading(KalmanFilter_t *kf); static void IMU_QuaternionEKF_SetH(KalmanFilter_t *kf); static void IMU_QuaternionEKF_xhatUpdate(KalmanFilter_t *kf); /** * @brief Quaternion EKF initialization and some reference value * @param[in] process_noise1 quaternion process noise 10 * @param[in] process_noise2 gyro bias process noise 0.001 * @param[in] measure_noise accel measure noise 1000000 * @param[in] lambda fading coefficient 0.9996 * @param[in] lpf lowpass filter coefficient 0 */ void IMU_QuaternionEKF_Init(float process_noise1, float process_noise2, float measure_noise, float lambda, float lpf) { QEKF_INS.Initialized = 1; QEKF_INS.Q1 = process_noise1; QEKF_INS.Q2 = process_noise2; QEKF_INS.R = measure_noise; QEKF_INS.ChiSquareTestThreshold = 1e-8; QEKF_INS.ConvergeFlag = 0; QEKF_INS.ErrorCount = 0; QEKF_INS.UpdateCount = 0; if (lambda > 1) { lambda = 1; } QEKF_INS.lambda = lambda; QEKF_INS.accLPFcoef = lpf; // 初始化矩阵维度信息 Kalman_Filter_Init(&QEKF_INS.IMU_QuaternionEKF, 6, 0, 3); Matrix_Init(&QEKF_INS.ChiSquare, 1, 1, (float *)QEKF_INS.ChiSquare_Data); // 姿态初始化 QEKF_INS.IMU_QuaternionEKF.xhat_data[0] = 1; QEKF_INS.IMU_QuaternionEKF.xhat_data[1] = 0; QEKF_INS.IMU_QuaternionEKF.xhat_data[2] = 0; QEKF_INS.IMU_QuaternionEKF.xhat_data[3] = 0; // 自定义函数初始化,用于扩展或增加kf的基础功能 QEKF_INS.IMU_QuaternionEKF.User_Func0_f = IMU_QuaternionEKF_Observe; QEKF_INS.IMU_QuaternionEKF.User_Func1_f = IMU_QuaternionEKF_F_Linearization_P_Fading; QEKF_INS.IMU_QuaternionEKF.User_Func2_f = IMU_QuaternionEKF_SetH; QEKF_INS.IMU_QuaternionEKF.User_Func3_f = IMU_QuaternionEKF_xhatUpdate; // 设定标志位,用自定函数替换kf标准步骤中的SetK(计算增益)以及xhatupdate(后验估计/融合) QEKF_INS.IMU_QuaternionEKF.SkipEq3 = TRUE; QEKF_INS.IMU_QuaternionEKF.SkipEq4 = TRUE; memcpy(QEKF_INS.IMU_QuaternionEKF.F_data, IMU_QuaternionEKF_F, sizeof(IMU_QuaternionEKF_F)); memcpy(QEKF_INS.IMU_QuaternionEKF.P_data, IMU_QuaternionEKF_P, sizeof(IMU_QuaternionEKF_P)); } /** * @brief Quaternion EKF update * @param[in] gyro x y z in rad/s * @param[in] accel x y z in m/s² * @param[in] update period in s */ void IMU_QuaternionEKF_Update(float gx, float gy, float gz, float ax, float ay, float az, float dt) { // 0.5(Ohm-Ohm^bias)*deltaT,用于更新工作点处的状态转移F矩阵 static float halfgxdt, halfgydt, halfgzdt; static float accelInvNorm; if (!QEKF_INS.Initialized) { IMU_QuaternionEKF_Init(10, 0.001, 1000000 * 10, 0.9996 * 0 + 1, 0); } /* F, number with * represent vals to be set 0 1* 2* 3* 4 5 6* 7 8* 9* 10 11 12* 13* 14 15* 16 17 18* 19* 20* 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 */ QEKF_INS.dt = dt; QEKF_INS.Gyro[0] = gx - QEKF_INS.GyroBias[0]; QEKF_INS.Gyro[1] = gy - QEKF_INS.GyroBias[1]; QEKF_INS.Gyro[2] = gz - QEKF_INS.GyroBias[2]; // set F halfgxdt = 0.5f * QEKF_INS.Gyro[0] * dt; halfgydt = 0.5f * QEKF_INS.Gyro[1] * dt; halfgzdt = 0.5f * QEKF_INS.Gyro[2] * dt; // 此部分设定状态转移矩阵F的左上角部分 4x4子矩阵,即0.5(Ohm-Ohm^bias)*deltaT,右下角有一个2x2单位阵已经初始化好了 // 注意在predict步F的右上角是4x2的零矩阵,因此每次predict的时候都会调用memcpy用单位阵覆盖前一轮线性化后的矩阵 memcpy(QEKF_INS.IMU_QuaternionEKF.F_data, IMU_QuaternionEKF_F, sizeof(IMU_QuaternionEKF_F)); QEKF_INS.IMU_QuaternionEKF.F_data[1] = -halfgxdt; QEKF_INS.IMU_QuaternionEKF.F_data[2] = -halfgydt; QEKF_INS.IMU_QuaternionEKF.F_data[3] = -halfgzdt; QEKF_INS.IMU_QuaternionEKF.F_data[6] = halfgxdt; QEKF_INS.IMU_QuaternionEKF.F_data[8] = halfgzdt; QEKF_INS.IMU_QuaternionEKF.F_data[9] = -halfgydt; QEKF_INS.IMU_QuaternionEKF.F_data[12] = halfgydt; QEKF_INS.IMU_QuaternionEKF.F_data[13] = -halfgzdt; QEKF_INS.IMU_QuaternionEKF.F_data[15] = halfgxdt; QEKF_INS.IMU_QuaternionEKF.F_data[18] = halfgzdt; QEKF_INS.IMU_QuaternionEKF.F_data[19] = halfgydt; QEKF_INS.IMU_QuaternionEKF.F_data[20] = -halfgxdt; // accel low pass filter,加速度过一下低通滤波平滑数据,降低撞击和异常的影响 if (QEKF_INS.UpdateCount == 0) // 如果是第一次进入,需要初始化低通滤波 { QEKF_INS.Accel[0] = ax; QEKF_INS.Accel[1] = ay; QEKF_INS.Accel[2] = az; } QEKF_INS.Accel[0] = QEKF_INS.Accel[0] * QEKF_INS.accLPFcoef / (QEKF_INS.dt + QEKF_INS.accLPFcoef) + ax * QEKF_INS.dt / (QEKF_INS.dt + QEKF_INS.accLPFcoef); QEKF_INS.Accel[1] = QEKF_INS.Accel[1] * QEKF_INS.accLPFcoef / (QEKF_INS.dt + QEKF_INS.accLPFcoef) + ay * QEKF_INS.dt / (QEKF_INS.dt + QEKF_INS.accLPFcoef); QEKF_INS.Accel[2] = QEKF_INS.Accel[2] * QEKF_INS.accLPFcoef / (QEKF_INS.dt + QEKF_INS.accLPFcoef) + az * QEKF_INS.dt / (QEKF_INS.dt + QEKF_INS.accLPFcoef); // set z,单位化重力加速度向量 accelInvNorm = invSqrt(QEKF_INS.Accel[0] * QEKF_INS.Accel[0] + QEKF_INS.Accel[1] * QEKF_INS.Accel[1] + QEKF_INS.Accel[2] * QEKF_INS.Accel[2]); for (uint8_t i = 0; i < 3; ++i) { QEKF_INS.IMU_QuaternionEKF.MeasuredVector[i] = QEKF_INS.Accel[i] * accelInvNorm; // 用加速度向量更新量测值 } // get body state QEKF_INS.gyro_norm = 1.0f / invSqrt(QEKF_INS.Gyro[0] * QEKF_INS.Gyro[0] + QEKF_INS.Gyro[1] * QEKF_INS.Gyro[1] + QEKF_INS.Gyro[2] * QEKF_INS.Gyro[2]); QEKF_INS.accl_norm = 1.0f / accelInvNorm; // 如果角速度小于阈值且加速度处于设定范围内,认为运动稳定,加速度可以用于修正角速度 // 稍后在最后的姿态更新部分会利用StableFlag来确定 if (QEKF_INS.gyro_norm < 0.3f && QEKF_INS.accl_norm > 9.8f - 0.5f && QEKF_INS.accl_norm < 9.8f + 0.5f) { QEKF_INS.StableFlag = 1; } else { QEKF_INS.StableFlag = 0; } // set Q R,过程噪声和观测噪声矩阵 QEKF_INS.IMU_QuaternionEKF.Q_data[0] = QEKF_INS.Q1 * QEKF_INS.dt; QEKF_INS.IMU_QuaternionEKF.Q_data[7] = QEKF_INS.Q1 * QEKF_INS.dt; QEKF_INS.IMU_QuaternionEKF.Q_data[14] = QEKF_INS.Q1 * QEKF_INS.dt; QEKF_INS.IMU_QuaternionEKF.Q_data[21] = QEKF_INS.Q1 * QEKF_INS.dt; QEKF_INS.IMU_QuaternionEKF.Q_data[28] = QEKF_INS.Q2 * QEKF_INS.dt; QEKF_INS.IMU_QuaternionEKF.Q_data[35] = QEKF_INS.Q2 * QEKF_INS.dt; QEKF_INS.IMU_QuaternionEKF.R_data[0] = QEKF_INS.R; QEKF_INS.IMU_QuaternionEKF.R_data[4] = QEKF_INS.R; QEKF_INS.IMU_QuaternionEKF.R_data[8] = QEKF_INS.R; // 调用kalman_filter.c封装好的函数,注意几个User_Funcx_f的调用 Kalman_Filter_Update(&QEKF_INS.IMU_QuaternionEKF); // 获取融合后的数据,包括四元数和xy零飘值 QEKF_INS.q[0] = QEKF_INS.IMU_QuaternionEKF.FilteredValue[0]; QEKF_INS.q[1] = QEKF_INS.IMU_QuaternionEKF.FilteredValue[1]; QEKF_INS.q[2] = QEKF_INS.IMU_QuaternionEKF.FilteredValue[2]; QEKF_INS.q[3] = QEKF_INS.IMU_QuaternionEKF.FilteredValue[3]; QEKF_INS.GyroBias[0] = QEKF_INS.IMU_QuaternionEKF.FilteredValue[4]; QEKF_INS.GyroBias[1] = QEKF_INS.IMU_QuaternionEKF.FilteredValue[5]; QEKF_INS.GyroBias[2] = 0; // 大部分时候z轴通天,无法观测yaw的漂移 // 利用四元数反解欧拉角 QEKF_INS.Yaw = atan2f(2.0f * (QEKF_INS.q[0] * QEKF_INS.q[3] + QEKF_INS.q[1] * QEKF_INS.q[2]), 2.0f * (QEKF_INS.q[0] * QEKF_INS.q[0] + QEKF_INS.q[1] * QEKF_INS.q[1]) - 1.0f) * 57.295779513f; QEKF_INS.Pitch = atan2f(2.0f * (QEKF_INS.q[0] * QEKF_INS.q[1] + QEKF_INS.q[2] * QEKF_INS.q[3]), 2.0f * (QEKF_INS.q[0] * QEKF_INS.q[0] + QEKF_INS.q[3] * QEKF_INS.q[3]) - 1.0f) * 57.295779513f; QEKF_INS.Roll = asinf(-2.0f * (QEKF_INS.q[1] * QEKF_INS.q[3] - QEKF_INS.q[0] * QEKF_INS.q[2])) * 57.295779513f; // get Yaw total, yaw数据可能会超过360,处理一下方便其他功能使用(如小陀螺) if (QEKF_INS.Yaw - QEKF_INS.YawAngleLast > 180.0f) { QEKF_INS.YawRoundCount--; } else if (QEKF_INS.Yaw - QEKF_INS.YawAngleLast < -180.0f) { QEKF_INS.YawRoundCount++; } QEKF_INS.YawTotalAngle = 360.0f * QEKF_INS.YawRoundCount + QEKF_INS.Yaw; QEKF_INS.YawAngleLast = QEKF_INS.Yaw; QEKF_INS.UpdateCount++; // 初始化低通滤波用,计数测试用 } /** * @brief 用于更新线性化后的状态转移矩阵F右上角的一个4x2分块矩阵,稍后用于协方差矩阵P的更新; * 并对零漂的方差进行限制,防止过度收敛并限幅防止发散 * * @param kf */ static void IMU_QuaternionEKF_F_Linearization_P_Fading(KalmanFilter_t *kf) { static float q0, q1, q2, q3; static float qInvNorm; q0 = kf->xhatminus_data[0]; q1 = kf->xhatminus_data[1]; q2 = kf->xhatminus_data[2]; q3 = kf->xhatminus_data[3]; // quaternion normalize qInvNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); for (uint8_t i = 0; i < 4; ++i) { kf->xhatminus_data[i] *= qInvNorm; } /* F, number with * represent vals to be set 0 1 2 3 4* 5* 6 7 8 9 10* 11* 12 13 14 15 16* 17* 18 19 20 21 22* 23* 24 25 26 27 28 29 30 31 32 33 34 35 */ // set F kf->F_data[4] = q1 * QEKF_INS.dt / 2; kf->F_data[5] = q2 * QEKF_INS.dt / 2; kf->F_data[10] = -q0 * QEKF_INS.dt / 2; kf->F_data[11] = q3 * QEKF_INS.dt / 2; kf->F_data[16] = -q3 * QEKF_INS.dt / 2; kf->F_data[17] = -q0 * QEKF_INS.dt / 2; kf->F_data[22] = q2 * QEKF_INS.dt / 2; kf->F_data[23] = -q1 * QEKF_INS.dt / 2; // fading filter,防止零飘参数过度收敛 kf->P_data[28] /= QEKF_INS.lambda; kf->P_data[35] /= QEKF_INS.lambda; // 限幅,防止发散 if (kf->P_data[28] > 10000) { kf->P_data[28] = 10000; } if (kf->P_data[35] > 10000) { kf->P_data[35] = 10000; } } /** * @brief 在工作点处计算观测函数h(x)的Jacobi矩阵H * * @param kf */ static void IMU_QuaternionEKF_SetH(KalmanFilter_t *kf) { static float doubleq0, doubleq1, doubleq2, doubleq3; /* H 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 last two cols are zero */ // set H doubleq0 = 2 * kf->xhatminus_data[0]; doubleq1 = 2 * kf->xhatminus_data[1]; doubleq2 = 2 * kf->xhatminus_data[2]; doubleq3 = 2 * kf->xhatminus_data[3]; memset(kf->H_data, 0, sizeof_float * kf->zSize * kf->xhatSize); kf->H_data[0] = -doubleq2; kf->H_data[1] = doubleq3; kf->H_data[2] = -doubleq0; kf->H_data[3] = doubleq1; kf->H_data[6] = doubleq1; kf->H_data[7] = doubleq0; kf->H_data[8] = doubleq3; kf->H_data[9] = doubleq2; kf->H_data[12] = doubleq0; kf->H_data[13] = -doubleq1; kf->H_data[14] = -doubleq2; kf->H_data[15] = doubleq3; } /** * @brief 利用观测值和先验估计得到最优的后验估计 * 加入了卡方检验以判断融合加速度的条件是否满足 * 同时引入发散保护保证恶劣工况下的必要量测更新 * * @param kf */ static void IMU_QuaternionEKF_xhatUpdate(KalmanFilter_t *kf) { static float q0, q1, q2, q3; kf->MatStatus = Matrix_Transpose(&kf->H, &kf->HT); // z|x => x|z kf->temp_matrix.numRows = kf->H.numRows; kf->temp_matrix.numCols = kf->Pminus.numCols; kf->MatStatus = Matrix_Multiply(&kf->H, &kf->Pminus, &kf->temp_matrix); // temp_matrix = H·P'(k) kf->temp_matrix1.numRows = kf->temp_matrix.numRows; kf->temp_matrix1.numCols = kf->HT.numCols; kf->MatStatus = Matrix_Multiply(&kf->temp_matrix, &kf->HT, &kf->temp_matrix1); // temp_matrix1 = H·P'(k)·HT kf->S.numRows = kf->R.numRows; kf->S.numCols = kf->R.numCols; kf->MatStatus = Matrix_Add(&kf->temp_matrix1, &kf->R, &kf->S); // S = H P'(k) HT + R kf->MatStatus = Matrix_Inverse(&kf->S, &kf->temp_matrix1); // temp_matrix1 = inv(H·P'(k)·HT + R) q0 = kf->xhatminus_data[0]; q1 = kf->xhatminus_data[1]; q2 = kf->xhatminus_data[2]; q3 = kf->xhatminus_data[3]; kf->temp_vector.numRows = kf->H.numRows; kf->temp_vector.numCols = 1; // 计算预测得到的重力加速度方向(通过姿态获取的) kf->temp_vector_data[0] = 2 * (q1 * q3 - q0 * q2); kf->temp_vector_data[1] = 2 * (q0 * q1 + q2 * q3); kf->temp_vector_data[2] = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3; // temp_vector = h(xhat'(k)) // 计算预测值和各个轴的方向余弦 for (uint8_t i = 0; i < 3; ++i) { QEKF_INS.OrientationCosine[i] = acosf(fabsf(kf->temp_vector_data[i])); } // 利用加速度计数据修正 kf->temp_vector1.numRows = kf->z.numRows; kf->temp_vector1.numCols = 1; kf->MatStatus = Matrix_Subtract(&kf->z, &kf->temp_vector, &kf->temp_vector1); // temp_vector1 = z(k) - h(xhat'(k)) // chi-square test,卡方检验 kf->temp_matrix.numRows = kf->temp_vector1.numRows; kf->temp_matrix.numCols = 1; kf->MatStatus = Matrix_Multiply(&kf->temp_matrix1, &kf->temp_vector1, &kf->temp_matrix); // temp_matrix = inv(H·P'(k)·HT + R)·(z(k) - h(xhat'(k))) kf->temp_vector.numRows = 1; kf->temp_vector.numCols = kf->temp_vector1.numRows; kf->MatStatus = Matrix_Transpose(&kf->temp_vector1, &kf->temp_vector); // temp_vector = z(k) - h(xhat'(k))' kf->MatStatus = Matrix_Multiply(&kf->temp_vector, &kf->temp_matrix, &QEKF_INS.ChiSquare); // rk is small,filter converged/converging if (QEKF_INS.ChiSquare_Data[0] < 0.5f * QEKF_INS.ChiSquareTestThreshold) { QEKF_INS.ConvergeFlag = 1; } // rk is bigger than thre but once converged if (QEKF_INS.ChiSquare_Data[0] > QEKF_INS.ChiSquareTestThreshold && QEKF_INS.ConvergeFlag) { if (QEKF_INS.StableFlag) { QEKF_INS.ErrorCount++; // 载体静止时仍无法通过卡方检验 } else { QEKF_INS.ErrorCount = 0; } if (QEKF_INS.ErrorCount > 50) { // 滤波器发散 QEKF_INS.ConvergeFlag = 0; kf->SkipEq5 = FALSE; // step-5 is cov mat P updating } else { // 残差未通过卡方检验 仅预测 // xhat(k) = xhat'(k) // P(k) = P'(k) memcpy(kf->xhat_data, kf->xhatminus_data, sizeof_float * kf->xhatSize); memcpy(kf->P_data, kf->Pminus_data, sizeof_float * kf->xhatSize * kf->xhatSize); kf->SkipEq5 = TRUE; // part5 is P updating return; } } else // if divergent or rk is not that big/acceptable,use adaptive gain { // scale adaptive,rk越小则增益越大,否则更相信预测值 if (QEKF_INS.ChiSquare_Data[0] > 0.1f * QEKF_INS.ChiSquareTestThreshold && QEKF_INS.ConvergeFlag) { QEKF_INS.AdaptiveGainScale = (QEKF_INS.ChiSquareTestThreshold - QEKF_INS.ChiSquare_Data[0]) / (0.9f * QEKF_INS.ChiSquareTestThreshold); } else { QEKF_INS.AdaptiveGainScale = 1; } QEKF_INS.ErrorCount = 0; kf->SkipEq5 = FALSE; } // cal kf-gain K kf->temp_matrix.numRows = kf->Pminus.numRows; kf->temp_matrix.numCols = kf->HT.numCols; kf->MatStatus = Matrix_Multiply(&kf->Pminus, &kf->HT, &kf->temp_matrix); // temp_matrix = P'(k)·HT kf->MatStatus = Matrix_Multiply(&kf->temp_matrix, &kf->temp_matrix1, &kf->K); // implement adaptive for (uint8_t i = 0; i < kf->K.numRows * kf->K.numCols; ++i) { kf->K_data[i] *= QEKF_INS.AdaptiveGainScale; } for (uint8_t i = 4; i < 6; ++i) { for (uint8_t j = 0; j < 3; ++j) { kf->K_data[i * 3 + j] *= QEKF_INS.OrientationCosine[i - 4] / 1.5707963f; // 1 rad } } kf->temp_vector.numRows = kf->K.numRows; kf->temp_vector.numCols = 1; kf->MatStatus = Matrix_Multiply(&kf->K, &kf->temp_vector1, &kf->temp_vector); // temp_vector = K(k)·(z(k) - H·xhat'(k)) // 零漂修正限幅,一般不会有过大的漂移 if (QEKF_INS.ConvergeFlag) { for (uint8_t i = 4; i < 6; ++i) { if (kf->temp_vector.pData[i] > 1e-2f * QEKF_INS.dt) { kf->temp_vector.pData[i] = 1e-2f * QEKF_INS.dt; } if (kf->temp_vector.pData[i] < -1e-2f * QEKF_INS.dt) { kf->temp_vector.pData[i] = -1e-2f * QEKF_INS.dt; } } } // 不修正yaw轴数据 kf->temp_vector.pData[3] = 0; kf->MatStatus = Matrix_Add(&kf->xhatminus, &kf->temp_vector, &kf->xhat); } /** * @brief EKF观测环节,其实就是把数据复制一下 * * @param kf kf类型定义 */ static void IMU_QuaternionEKF_Observe(KalmanFilter_t *kf) { memcpy(IMU_QuaternionEKF_P, kf->P_data, sizeof(IMU_QuaternionEKF_P)); memcpy(IMU_QuaternionEKF_K, kf->K_data, sizeof(IMU_QuaternionEKF_K)); memcpy(IMU_QuaternionEKF_H, kf->H_data, sizeof(IMU_QuaternionEKF_H)); } /** * @brief 自定义1/sqrt(x),速度更快 * * @param x x * @return float */ static float invSqrt(float x) { float halfx = 0.5f * x; float y = x; long i = *(long *)&y; i = 0x5f375a86 - (i >> 1); y = *(float *)&i; y = y * (1.5f - (halfx * y * y)); return y; }