/** ****************************************************************************** * @file bsp_dwt.c * @author Wang Hongxi * @author modified by Neo with annotation * @version V1.1.0 * @date 2022/3/8 * @brief */ #include "bsp_dwt.h" #include "cmsis_os.h" static DWT_Time_t SysTime; static uint32_t CPU_FREQ_Hz, CPU_FREQ_Hz_ms, CPU_FREQ_Hz_us; static uint32_t CYCCNT_RountCount; static uint32_t CYCCNT_LAST; static uint64_t CYCCNT64; static osMutexId DWT_MUTEX; /** * @brief 私有函数,用于检查DWT CYCCNT寄存器是否溢出,并更新CYCCNT_RountCount * @attention 此函数假设两次调用之间的时间间隔不超过一次溢出 * * @todo 更好的方案是为dwt的时间更新单独设置一个任务? * 不过,使用dwt的初衷是定时不被中断/任务等因素影响,因此该实现仍然有其存在的意义 * */ static void DWT_CNT_Update(void) { if (__get_CONTROL()) // 不在中断中,使用互斥锁;在中断则直接执行即可,本框架将所有中断优先级设置为相同,故不会被其他中断重入 if (osOK != osMutexWait(DWT_MUTEX, 0)) return; volatile uint32_t cnt_now = DWT->CYCCNT; if (cnt_now < CYCCNT_LAST) CYCCNT_RountCount++; CYCCNT_LAST = DWT->CYCCNT; osMutexRelease(DWT_MUTEX); } void DWT_Init(uint32_t CPU_Freq_mHz) { /* 使能DWT外设 */ CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk; /* DWT CYCCNT寄存器计数清0 */ DWT->CYCCNT = (uint32_t)0u; /* 使能Cortex-M DWT CYCCNT寄存器 */ DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk; CPU_FREQ_Hz = CPU_Freq_mHz * 1000000; CPU_FREQ_Hz_ms = CPU_FREQ_Hz / 1000; CPU_FREQ_Hz_us = CPU_FREQ_Hz / 1000000; CYCCNT_RountCount = 0; osMutexDef(dwt_mutex); DWT_MUTEX = osMutexCreate(osMutex(dwt_mutex)); DWT_CNT_Update(); } float DWT_GetDeltaT(uint32_t *cnt_last) { volatile uint32_t cnt_now = DWT->CYCCNT; float dt = ((uint32_t)(cnt_now - *cnt_last)) / ((float)(CPU_FREQ_Hz)); *cnt_last = cnt_now; DWT_CNT_Update(); return dt; } double DWT_GetDeltaT64(uint32_t *cnt_last) { volatile uint32_t cnt_now = DWT->CYCCNT; double dt = ((uint32_t)(cnt_now - *cnt_last)) / ((double)(CPU_FREQ_Hz)); *cnt_last = cnt_now; DWT_CNT_Update(); return dt; } void DWT_SysTimeUpdate(void) { volatile uint32_t cnt_now = DWT->CYCCNT; static uint64_t CNT_TEMP1, CNT_TEMP2, CNT_TEMP3; DWT_CNT_Update(); CYCCNT64 = (uint64_t)CYCCNT_RountCount * (uint64_t)UINT32_MAX + (uint64_t)cnt_now; CNT_TEMP1 = CYCCNT64 / CPU_FREQ_Hz; CNT_TEMP2 = CYCCNT64 - CNT_TEMP1 * CPU_FREQ_Hz; SysTime.s = CNT_TEMP1; SysTime.ms = CNT_TEMP2 / CPU_FREQ_Hz_ms; CNT_TEMP3 = CNT_TEMP2 - SysTime.ms * CPU_FREQ_Hz_ms; SysTime.us = CNT_TEMP3 / CPU_FREQ_Hz_us; } float DWT_GetTimeline_s(void) { DWT_SysTimeUpdate(); float DWT_Timelinef32 = SysTime.s + SysTime.ms * 0.001f + SysTime.us * 0.000001f; return DWT_Timelinef32; } float DWT_GetTimeline_ms(void) { DWT_SysTimeUpdate(); float DWT_Timelinef32 = SysTime.s * 1000 + SysTime.ms + SysTime.us * 0.001f; return DWT_Timelinef32; } uint64_t DWT_GetTimeline_us(void) { DWT_SysTimeUpdate(); uint64_t DWT_Timelinef32 = SysTime.s * 1000000 + SysTime.ms * 1000 + SysTime.us; return DWT_Timelinef32; } void DWT_Delay(float Delay) { uint32_t tickstart = DWT->CYCCNT; float wait = Delay; while ((DWT->CYCCNT - tickstart) < wait * (float)CPU_FREQ_Hz) ; }