#include "remote_control.h" #include "string.h" #include "bsp_usart.h" #include "memory.h" #include "stdlib.h" #define REMOTE_CONTROL_FRAME_SIZE 18u // 遥控器接收的buffer大小 // 遥控器数据 static RC_ctrl_t rc_ctrl[2]; //[0]:当前数据TEMP,[1]:上一次的数据LAST.用于按键持续按下和切换的判断 // 遥控器拥有的串口实例,因为遥控器是单例,所以这里只有一个,就不封装了 static USARTInstance *rc_usart_instance; /** * @brief 矫正遥控器摇杆的值,超过660或者小于-660的值都认为是无效值,置0 * */ static void RectifyRCjoystick() { for (uint8_t i = 0; i < 5; ++i) { if (abs(*(&rc_ctrl[TEMP].rc.rocker_l_ + i)) > 660) *(&rc_ctrl[TEMP].rc.rocker_l_ + i) = 0; } } /** * @brief remote control protocol resolution * @param[in] sbus_buf: raw data point * @param[out] rc_ctrl: remote control data struct point * @retval none */ static void sbus_to_rc(const uint8_t *sbus_buf) { memcpy(&rc_ctrl[1], &rc_ctrl[TEMP], sizeof(RC_ctrl_t)); // 保存上一次的数据,用于按键持续按下和切换的判断 // 摇杆,直接解算时减去偏置 rc_ctrl[TEMP].rc.rocker_r_ = ((sbus_buf[0] | (sbus_buf[1] << 8)) & 0x07ff) - RC_CH_VALUE_OFFSET; //!< Channel 0 rc_ctrl[TEMP].rc.rocker_r1 = (((sbus_buf[1] >> 3) | (sbus_buf[2] << 5)) & 0x07ff) - RC_CH_VALUE_OFFSET; //!< Channel 1 rc_ctrl[TEMP].rc.rocker_l_ = (((sbus_buf[2] >> 6) | (sbus_buf[3] << 2) | (sbus_buf[4] << 10)) & 0x07ff) - RC_CH_VALUE_OFFSET; //!< Channel 2 rc_ctrl[TEMP].rc.rocker_l1 = (((sbus_buf[4] >> 1) | (sbus_buf[5] << 7)) & 0x07ff) - RC_CH_VALUE_OFFSET; //!< Channel 3 rc_ctrl[TEMP].rc.dial = ((sbus_buf[16] | (sbus_buf[17] << 8)) & 0x07FF) - RC_CH_VALUE_OFFSET; // 左侧拨轮 RectifyRCjoystick(); // 开关,0左1右 rc_ctrl[TEMP].rc.switch_right = ((sbus_buf[5] >> 4) & 0x0003); //!< Switch right rc_ctrl[TEMP].rc.switch_left = ((sbus_buf[5] >> 4) & 0x000C) >> 2; //!< Switch left // 鼠标解析 rc_ctrl[TEMP].mouse.x = sbus_buf[6] | (sbus_buf[7] << 8); //!< Mouse X axis rc_ctrl[TEMP].mouse.y = sbus_buf[8] | (sbus_buf[9] << 8); //!< Mouse Y axis rc_ctrl[TEMP].mouse.z = sbus_buf[10] | (sbus_buf[11] << 8); //!< Mouse Z axis rc_ctrl[TEMP].mouse.press_l = sbus_buf[12]; //!< Mouse Left Is Press ? rc_ctrl[TEMP].mouse.press_r = sbus_buf[13]; //!< Mouse Right Is Press ? // 按键值,每个键1bit,key_temp共16位;按键顺序在remote_control.h的宏定义中可见 // 使用位域后不再需要这一中间操作 rc_ctrl[TEMP].key_temp = sbus_buf[14] | (sbus_buf[15] << 8); //!< KeyBoard value // @todo 似乎可以直接用位域操作进行,把key_temp通过强制类型转换变成key类型? 位域方案在下面,尚未测试 // 按键值解算,利用宏+循环减少代码长度 for (uint16_t i = 0x0001, j = 0; i != 0x8000; i *= 2, j++) // 依次查看每一个键 { // 如果键按下,对应键的key press状态置1,否则为0 rc_ctrl[TEMP].key[KEY_PRESS][j] = rc_ctrl[TEMP].key_temp & i; // 如果当前按下且上一次没按下,切换按键状态.一些模式要通过按键状态而不是按键是否按下来确定(实际上是大部分) rc_ctrl[TEMP].key[KEY_STATE][j] = rc_ctrl[TEMP].key[KEY_PRESS][j] && !rc_ctrl[1].key[KEY_PRESS][j]; // 检查是否有组合键按下 if (rc_ctrl[TEMP].key_temp & 0x0001u << Key_Shift) // 按下ctrl rc_ctrl[TEMP].key[KEY_PRESS_WITH_SHIFT][j] = rc_ctrl[TEMP].key_temp & i; if (rc_ctrl[TEMP].key_temp & 0x0001u << Key_Ctrl) // 按下shift rc_ctrl[TEMP].key[KEY_PRESS_WITH_CTRL][j] = rc_ctrl[TEMP].key_temp & i; } // 位域的按键值解算,直接memcpy即可,注意小端低字节在前,即lsb在第一位,msb在最后. 尚未测试 // *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_PRESS] = (uint16_t)(sbus_buf[14] | (sbus_buf[15] << 8)); // *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_STATE] = *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_PRESS] & ~(*(uint16_t *)&(rc_ctrl[1].key_test[KEY_PRESS])); // if (rc_ctrl[TEMP].key_test[KEY_PRESS].ctrl) // rc_ctrl[TEMP].key_test[KEY_PRESS_WITH_CTRL] = rc_ctrl[TEMP].key_test[KEY_PRESS]; // if (rc_ctrl[TEMP].key_test[KEY_PRESS].shift) // rc_ctrl[TEMP].key_test[Key_Shift] = rc_ctrl[TEMP].key_test[KEY_PRESS]; } /** * @brief protocol resolve callback * this func would be called when usart3 idle interrupt happens * 对sbus_to_rc的简单封装,用于注册到bsp_usart的回调函数中 */ static void RemoteControlRxCallback() { sbus_to_rc(rc_usart_instance->recv_buff); } RC_ctrl_t *RemoteControlInit(UART_HandleTypeDef *rc_usart_handle) { USART_Init_Config_s conf; conf.module_callback = RemoteControlRxCallback; conf.usart_handle = rc_usart_handle; conf.recv_buff_size = REMOTE_CONTROL_FRAME_SIZE; rc_usart_instance = USARTRegister(&conf); return (RC_ctrl_t *)&rc_ctrl; }