修复了total angle计算异常的问题

This commit is contained in:
NeoZng 2022-12-08 12:08:49 +08:00
parent 2dd39f9815
commit f043d5e265
4 changed files with 70 additions and 67 deletions

View File

@ -17,7 +17,7 @@
static CANCommInstance *chasiss_can_comm; // 双板通信 static CANCommInstance *chasiss_can_comm; // 双板通信
#endif // !ONE_BOARD #endif // !ONE_BOARD
static RC_ctrl_t *remote_control_data; // 遥控器数据,初始化时返回 static RC_ctrl_t *rc_data; // 遥控器数据,初始化时返回
static Vision_Recv_s *vision_recv_data; // 视觉接收数据指针,初始化时返回 static Vision_Recv_s *vision_recv_data; // 视觉接收数据指针,初始化时返回
static Vision_Send_s vision_send_data; // 视觉发送数据 static Vision_Send_s vision_send_data; // 视觉发送数据
@ -40,15 +40,15 @@ static Robot_Status_e robot_state;
void GimbalCMDInit() void GimbalCMDInit()
{ {
remote_control_data = RemoteControlInit(&huart3); // 修改为对应串口,注意dbus协议串口需加反相器 rc_data = RemoteControlInit(&huart3); // 修改为对应串口,注意dbus协议串口需加反相器
vision_recv_data = VisionInit(&huart1); // 视觉通信串口 vision_recv_data = VisionInit(&huart1); // 视觉通信串口
gimbal_cmd_pub = PubRegister("gimbal_cmd", sizeof(Gimbal_Ctrl_Cmd_s)); gimbal_cmd_pub = PubRegister("gimbal_cmd", sizeof(Gimbal_Ctrl_Cmd_s));
gimbal_feed_sub = SubRegister("gimbal_feed", sizeof(Gimbal_Upload_Data_s)); gimbal_feed_sub = SubRegister("gimbal_feed", sizeof(Gimbal_Upload_Data_s));
shoot_cmd_pub = PubRegister("shoot_cmd", sizeof(Shoot_Ctrl_Cmd_s)); shoot_cmd_pub = PubRegister("shoot_cmd", sizeof(Shoot_Ctrl_Cmd_s));
shoot_feed_sub = SubRegister("shoot_feed", sizeof(Shoot_Upload_Data_s)); shoot_feed_sub = SubRegister("shoot_feed", sizeof(Shoot_Upload_Data_s));
chassis_cmd_pub = PubRegister("gimbal2chassis", sizeof(Chassis_Ctrl_Cmd_s)); chassis_cmd_pub = PubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
chassis_feed_sub = SubRegister("chassis2gimbal", sizeof(Chassis_Upload_Data_s)); chassis_feed_sub = SubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
} }
/** /**
@ -84,48 +84,44 @@ static void CalcOffsetAngle()
static void RemoteControlSet() static void RemoteControlSet()
{ {
// 控制底盘和云台运行模式,云台待添加,云台是否始终使用IMU数据? // 控制底盘和云台运行模式,云台待添加,云台是否始终使用IMU数据?
if (switch_is_down(remote_control_data[0].rc.s[1])) // 右侧开关状态[下],底盘跟随云台 if (switch_is_down(rc_data[TEMP].rc.s[0])) // 右侧开关状态[下],底盘跟随云台
chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW; chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW;
if (switch_is_mid(remote_control_data[0].rc.s[1])) // 右侧开关状态[中],底盘和云台分离,底盘保持不转动 if (switch_is_mid(rc_data[TEMP].rc.s[0])) // 右侧开关状态[中],底盘和云台分离,底盘保持不转动
chassis_cmd_send.chassis_mode = CHASSIS_NO_FOLLOW; chassis_cmd_send.chassis_mode = CHASSIS_NO_FOLLOW;
// 云台参数,确定云台控制数据 // 云台参数,确定云台控制数据
if (switch_is_mid(remote_control_data[0].rc.s[0])) // 左侧开关状态为[中],视觉模式 if (switch_is_mid(rc_data[TEMP].rc.s[1])) // 左侧开关状态为[中],视觉模式
{ {
// 待添加 // 待添加,视觉会发来和目标的误差,同样将其转化为total angle的增量进行控制
// ... // ...
} }
// 侧开关状态为[下],或视觉未识别到目标,纯遥控器拨杆控制 // 侧开关状态为[下],或视觉未识别到目标,纯遥控器拨杆控制
if (switch_is_down(remote_control_data[0].rc.s[0]) || vision_recv_data->target_state == NO_TARGET) if (switch_is_down(rc_data[TEMP].rc.s[1]) || vision_recv_data->target_state == NO_TARGET)
{ // 按照摇杆的输出大小进行角度增量,增益系数需调整 { // 按照摇杆的输出大小进行角度增量,增益系数需调整
gimbal_cmd_send.yaw += 0.04f * (float)remote_control_data[0].rc.joystick[2]; gimbal_cmd_send.yaw += 0.04f * (float)rc_data[TEMP].rc.joystick[2];
gimbal_cmd_send.pitch = 0.5f * (float)remote_control_data[0].rc.joystick[3]; gimbal_cmd_send.pitch += 0.5f * (float)rc_data[TEMP].rc.joystick[3];
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE; gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
} }
// 底盘参数,目前没有加入小陀螺(调试似乎没有必要),系数需要调整 // 底盘参数,目前没有加入小陀螺(调试似乎没有必要),系数需要调整
chassis_cmd_send.vx = 1.0f * (float)remote_control_data[0].rc.joystick[0]; chassis_cmd_send.vx = 1.0f * (float)rc_data[TEMP].rc.joystick[0];
chassis_cmd_send.vy = 1.0f * (float)remote_control_data[0].rc.joystick[1]; chassis_cmd_send.vy = 1.0f * (float)rc_data[TEMP].rc.joystick[1];
// 发射参数 // 发射参数
if (switch_is_up(remote_control_data[0].rc.s[1])) //右侧开关状态[上],弹舱打开 if (switch_is_up(rc_data[TEMP].rc.s[0])) // 右侧开关状态[上],弹舱打开
; // 弹舱舵机控制,待添加servo_motor模块,开启 ; // 弹舱舵机控制,待添加servo_motor模块,开启
else else
; // 弹舱舵机控制,待添加servo_motor模块,关闭 ; // 弹舱舵机控制,待添加servo_motor模块,关闭
// 摩擦轮控制,后续可以根据左侧拨轮的值大小切换射频 // 摩擦轮控制,后续可以根据左侧拨轮的值大小切换射频
if(remote_control_data[0].rc.joystick[4]>100) if (rc_data[TEMP].rc.joystick[4] > 100)
shoot_cmd_send.shoot_mode = FRICTION_ON; shoot_cmd_send.shoot_mode = FRICTION_ON;
else else
shoot_cmd_send.shoot_mode = FRICTION_OFF; shoot_cmd_send.shoot_mode = FRICTION_OFF;
// 拨弹控制,目前固定为连发 // 拨弹控制,目前固定为连发
if(remote_control_data[0].rc.joystick[4]>500) if (rc_data[TEMP].rc.joystick[4] > 500)
shoot_cmd_send.load_mode = LOAD_BURSTFIRE; shoot_cmd_send.load_mode = LOAD_BURSTFIRE;
else else
shoot_cmd_send.load_mode = LOAD_STOP; shoot_cmd_send.load_mode = LOAD_STOP;
} }
/** /**
@ -143,8 +139,8 @@ static void MouseKeySet()
*/ */
static void EmergencyHandler() static void EmergencyHandler()
{ {
// 拨轮的向下拨超过一半 // 拨轮的向下拨超过一半,注意向下拨轮是正
if (remote_control_data[0].rc.joystick[4] < -300) // 还需添加重要应用和模块离线的判断 if (rc_data[TEMP].rc.joystick[4] > 300) // 还需添加重要应用和模块离线的判断
{ {
robot_state = ROBOT_STOP; // 遥控器左上侧拨轮打满,进入紧急停止模式 robot_state = ROBOT_STOP; // 遥控器左上侧拨轮打满,进入紧急停止模式
gimbal_cmd_send.gimbal_mode == GIMBAL_ZERO_FORCE; gimbal_cmd_send.gimbal_mode == GIMBAL_ZERO_FORCE;
@ -152,7 +148,7 @@ static void EmergencyHandler()
shoot_cmd_send.shoot_mode == SHOOT_STOP; shoot_cmd_send.shoot_mode == SHOOT_STOP;
return; return;
} }
// if(remote_control_data[0].rc.joystick[4]>300 && 各个模块正常) // if(rc_data[TEMP].rc.joystick[4]<-300 && 各个模块正常)
// { // {
// //恢复运行 // //恢复运行
// //... // //...
@ -169,9 +165,9 @@ void GimbalCMDTask()
// 根据gimbal的反馈值计算云台和底盘正方向的夹角,不需要传参,通过私有变量完成 // 根据gimbal的反馈值计算云台和底盘正方向的夹角,不需要传参,通过私有变量完成
CalcOffsetAngle(); CalcOffsetAngle();
if (switch_is_down(remote_control_data[0].rc.s[0])) // 遥控器左侧开关状态为[下],遥控器控制 if (switch_is_down(rc_data[TEMP].rc.s[1])) // 遥控器左侧开关状态为[下],遥控器控制
RemoteControlSet(); RemoteControlSet();
else if (switch_is_up(remote_control_data[0].rc.s[0])) // 遥控器左侧开关状态为[上],键盘控制 else if (switch_is_up(rc_data[TEMP].rc.s[1])) // 遥控器左侧开关状态为[上],键盘控制
MouseKeySet(); MouseKeySet();
EmergencyHandler(); // 处理模块离线和遥控器急停等紧急情况 EmergencyHandler(); // 处理模块离线和遥控器急停等紧急情况

View File

@ -73,12 +73,12 @@ remote_control
拨轮向下打到底进入紧急停止模式;拨轮向上打开启摩擦轮,超过一半开始发射(速度环,连发) 拨轮向下打到底进入紧急停止模式;拨轮向上打开启摩擦轮,超过一半开始发射(速度环,连发)
左侧开关: 左侧开关`s[1]`:
- 上:键鼠控制 - 上:键鼠控制
- 中:视觉控制(没有识别到目标的时候仍然可以使用遥控器控制云台) - 中:视觉控制(没有识别到目标的时候仍然可以使用遥控器控制云台)
- 下:遥控器控制 - 下:遥控器控制
右侧开关: 右侧开关`s[0]`:
- 上:弹舱开 - 上:弹舱开
- 中:底盘云台分离(底盘不旋转,全向移动) - 中:底盘云台分离(底盘不旋转,全向移动)
- 下:底盘跟随云台 - 下:底盘跟随云台

View File

@ -17,57 +17,57 @@ static USARTInstance *rc_usart_instance;
*/ */
static void sbus_to_rc(volatile const uint8_t *sbus_buf) static void sbus_to_rc(volatile const uint8_t *sbus_buf)
{ {
memcpy(&rc_ctrl[1], &rc_ctrl[0], sizeof(RC_ctrl_t)); // 保存上一次的数据 memcpy(&rc_ctrl[1], &rc_ctrl[TEMP], sizeof(RC_ctrl_t)); // 保存上一次的数据
// 摇杆 // 摇杆
rc_ctrl[0].rc.joystick[0] = (sbus_buf[0] | (sbus_buf[1] << 8)) & 0x07ff; //!< Channel 0 rc_ctrl[TEMP].rc.joystick[0] = (sbus_buf[0] | (sbus_buf[1] << 8)) & 0x07ff; //!< Channel 0
rc_ctrl[0].rc.joystick[1] = ((sbus_buf[1] >> 3) | (sbus_buf[2] << 5)) & 0x07ff; //!< Channel 1 rc_ctrl[TEMP].rc.joystick[1] = ((sbus_buf[1] >> 3) | (sbus_buf[2] << 5)) & 0x07ff; //!< Channel 1
rc_ctrl[0].rc.joystick[2] = ((sbus_buf[2] >> 6) | (sbus_buf[3] << 2) | (sbus_buf[4] << 10)) & 0x07ff; //!< Channel 2 rc_ctrl[TEMP].rc.joystick[2] = ((sbus_buf[2] >> 6) | (sbus_buf[3] << 2) | (sbus_buf[4] << 10)) & 0x07ff; //!< Channel 2
rc_ctrl[0].rc.joystick[3] = ((sbus_buf[4] >> 1) | (sbus_buf[5] << 7)) & 0x07ff; //!< Channel 3 rc_ctrl[TEMP].rc.joystick[3] = ((sbus_buf[4] >> 1) | (sbus_buf[5] << 7)) & 0x07ff; //!< Channel 3
rc_ctrl[0].rc.joystick[4] = sbus_buf[16] | (sbus_buf[17] << 8); // 拨轮 rc_ctrl[TEMP].rc.joystick[4] = sbus_buf[16] | (sbus_buf[17] << 8); // 拨轮
// 开关,0左1右 // 开关,0左1右
rc_ctrl[0].rc.s[0] = ((sbus_buf[5] >> 4) & 0x0003); //!< Switch left rc_ctrl[TEMP].rc.s[0] = ((sbus_buf[5] >> 4) & 0x0003); //!< Switch left
rc_ctrl[0].rc.s[1] = ((sbus_buf[5] >> 4) & 0x000C) >> 2; //!< Switch right rc_ctrl[TEMP].rc.s[1] = ((sbus_buf[5] >> 4) & 0x000C) >> 2; //!< Switch right
// 鼠标解析 // 鼠标解析
rc_ctrl[0].mouse.x = sbus_buf[6] | (sbus_buf[7] << 8); //!< Mouse X axis rc_ctrl[TEMP].mouse.x = sbus_buf[6] | (sbus_buf[7] << 8); //!< Mouse X axis
rc_ctrl[0].mouse.y = sbus_buf[8] | (sbus_buf[9] << 8); //!< Mouse Y axis rc_ctrl[TEMP].mouse.y = sbus_buf[8] | (sbus_buf[9] << 8); //!< Mouse Y axis
rc_ctrl[0].mouse.z = sbus_buf[10] | (sbus_buf[11] << 8); //!< Mouse Z axis rc_ctrl[TEMP].mouse.z = sbus_buf[10] | (sbus_buf[11] << 8); //!< Mouse Z axis
rc_ctrl[0].mouse.press_l = sbus_buf[12]; //!< Mouse Left Is Press ? rc_ctrl[TEMP].mouse.press_l = sbus_buf[12]; //!< Mouse Left Is Press ?
rc_ctrl[0].mouse.press_r = sbus_buf[13]; //!< Mouse Right Is Press ? rc_ctrl[TEMP].mouse.press_r = sbus_buf[13]; //!< Mouse Right Is Press ?
// 按键值,每个键1bit,key_temp共16位;按键顺序在remote_control.h的宏定义中可见 // 按键值,每个键1bit,key_temp共16位;按键顺序在remote_control.h的宏定义中可见
// 使用位域后不再需要这一中间操作 // 使用位域后不再需要这一中间操作
rc_ctrl[0].key_temp = sbus_buf[14] | (sbus_buf[15] << 8); //!< KeyBoard value rc_ctrl[TEMP].key_temp = sbus_buf[14] | (sbus_buf[15] << 8); //!< KeyBoard value
// @todo 似乎可以直接用位域操作进行,把key_temp通过强制类型转换变成key类型? 位域方案在下面,尚未测试 // @todo 似乎可以直接用位域操作进行,把key_temp通过强制类型转换变成key类型? 位域方案在下面,尚未测试
// 按键值解算,利用宏+循环减少代码长度 // 按键值解算,利用宏+循环减少代码长度
for (uint16_t i = 0x0001, j = 0; i != 0x8000; i *= 2, j++) // 依次查看每一个键 for (uint16_t i = 0x0001, j = 0; i != 0x8000; i *= 2, j++) // 依次查看每一个键
{ {
// 如果键按下,对应键的key press状态置1,否则为0 // 如果键按下,对应键的key press状态置1,否则为0
rc_ctrl[0].key[KEY_PRESS][j] = rc_ctrl[0].key_temp & i; rc_ctrl[TEMP].key[KEY_PRESS][j] = rc_ctrl[TEMP].key_temp & i;
// 如果当前按下且上一次没按下,切换按键状态.一些工作要通过按键状态而不是按键是否按下来确定(实际上是大部分) // 如果当前按下且上一次没按下,切换按键状态.一些模式要通过按键状态而不是按键是否按下来确定(实际上是大部分)
rc_ctrl[0].key[KEY_STATE][j] = rc_ctrl[0].key[KEY_PRESS][j] && !rc_ctrl[1].key[KEY_PRESS][j]; rc_ctrl[TEMP].key[KEY_STATE][j] = rc_ctrl[TEMP].key[KEY_PRESS][j] && !rc_ctrl[1].key[KEY_PRESS][j];
// 检查是否有组合键按下 // 检查是否有组合键按下
if (rc_ctrl[0].key_temp & 0x0001u << Key_Shift) // 按下ctrl if (rc_ctrl[TEMP].key_temp & 0x0001u << Key_Shift) // 按下ctrl
rc_ctrl[0].key[KEY_PRESS_WITH_SHIFT][j] = rc_ctrl[0].key_temp & i; rc_ctrl[TEMP].key[KEY_PRESS_WITH_SHIFT][j] = rc_ctrl[TEMP].key_temp & i;
if (rc_ctrl[0].key_temp & 0x0001u << Key_Ctrl) // 按下shift if (rc_ctrl[TEMP].key_temp & 0x0001u << Key_Ctrl) // 按下shift
rc_ctrl[0].key[KEY_PRESS_WITH_CTRL][j] = rc_ctrl[0].key_temp & i; rc_ctrl[TEMP].key[KEY_PRESS_WITH_CTRL][j] = rc_ctrl[TEMP].key_temp & i;
} }
// 位域的按键值解算,直接memcpy即可,注意小端低字节在前,即lsb在第一位 // 位域的按键值解算,直接memcpy即可,注意小端低字节在前,即lsb在第一位
*(uint16_t *)&rc_ctrl[0].key_test[KEY_PRESS] = (uint16_t)(sbus_buf[14] | (sbus_buf[15] << 8)); // *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_PRESS] = (uint16_t)(sbus_buf[14] | (sbus_buf[15] << 8));
*(uint16_t *)&rc_ctrl[0].key_test[KEY_STATE] = *(uint16_t *)&rc_ctrl[0].key_test[KEY_PRESS] & ~(*(uint16_t *)&(rc_ctrl[1].key_test[KEY_PRESS])); // *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_STATE] = *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_PRESS] & ~(*(uint16_t *)&(rc_ctrl[1].key_test[KEY_PRESS]));
if (rc_ctrl[0].key_test[KEY_PRESS].ctrl) // if (rc_ctrl[TEMP].key_test[KEY_PRESS].ctrl)
rc_ctrl[0].key_test[KEY_PRESS_WITH_CTRL] = rc_ctrl[0].key_test[KEY_PRESS]; // rc_ctrl[TEMP].key_test[KEY_PRESS_WITH_CTRL] = rc_ctrl[TEMP].key_test[KEY_PRESS];
if (rc_ctrl[0].key_test[KEY_PRESS].shift) // if (rc_ctrl[TEMP].key_test[KEY_PRESS].shift)
rc_ctrl[0].key_test[Key_Shift] = rc_ctrl[0].key_test[KEY_PRESS]; // rc_ctrl[TEMP].key_test[Key_Shift] = rc_ctrl[TEMP].key_test[KEY_PRESS];
// 减去偏置值 // 减去偏置值
rc_ctrl[0].rc.joystick[0] -= RC_CH_VALUE_OFFSET; rc_ctrl[TEMP].rc.joystick[0] -= RC_CH_VALUE_OFFSET;
rc_ctrl[0].rc.joystick[1] -= RC_CH_VALUE_OFFSET; rc_ctrl[TEMP].rc.joystick[1] -= RC_CH_VALUE_OFFSET;
rc_ctrl[0].rc.joystick[2] -= RC_CH_VALUE_OFFSET; rc_ctrl[TEMP].rc.joystick[2] -= RC_CH_VALUE_OFFSET;
rc_ctrl[0].rc.joystick[3] -= RC_CH_VALUE_OFFSET; rc_ctrl[TEMP].rc.joystick[3] -= RC_CH_VALUE_OFFSET;
rc_ctrl[0].rc.joystick[4] -= RC_CH_VALUE_OFFSET; rc_ctrl[TEMP].rc.joystick[4] -= RC_CH_VALUE_OFFSET;
} }
/** /**

View File

@ -17,12 +17,17 @@
#include "main.h" #include "main.h"
#include "usart.h" #include "usart.h"
//
#define LAST 1
#define TEMP 0
// 获取按键操作 // 获取按键操作
#define KEY_PRESS 0 #define KEY_PRESS 0
#define KEY_STATE 1 #define KEY_STATE 1
#define KEY_PRESS_WITH_CTRL 2 #define KEY_PRESS_WITH_CTRL 2
#define KEY_PRESS_WITH_SHIFT 3 #define KEY_PRESS_WITH_SHIFT 3
// 检查接受值是否出错
#define RC_CH_VALUE_MIN ((uint16_t)364) #define RC_CH_VALUE_MIN ((uint16_t)364)
#define RC_CH_VALUE_OFFSET ((uint16_t)1024) #define RC_CH_VALUE_OFFSET ((uint16_t)1024)
#define RC_CH_VALUE_MAX ((uint16_t)1684) #define RC_CH_VALUE_MAX ((uint16_t)1684)
@ -34,6 +39,8 @@
#define switch_is_down(s) (s == RC_SW_DOWN) #define switch_is_down(s) (s == RC_SW_DOWN)
#define switch_is_mid(s) (s == RC_SW_MID) #define switch_is_mid(s) (s == RC_SW_MID)
#define switch_is_up(s) (s == RC_SW_UP) #define switch_is_up(s) (s == RC_SW_UP)
#define LEFT_SW 1
#define RIGHT_SW 0
/* ----------------------- PC Key Definition-------------------------------- */ /* ----------------------- PC Key Definition-------------------------------- */
// 对应key[x][0~16],获取对应的键;例如通过key[KEY_PRESS][Key_W]获取W键是否按下 // 对应key[x][0~16],获取对应的键;例如通过key[KEY_PRESS][Key_W]获取W键是否按下