sentry_gimbal_hzz/application/balance_chassis/balance.c

446 lines
17 KiB
C
Raw Normal View History

// app
#include "balance.h"
#include "gain_table.h"
#include "robot_def.h"
#include "general_def.h"
// module
#include "HT04.h"
#include "LK9025.h"
#include "bmi088.h"
#include "referee_task.h"
#include "super_cap.h"
#include "controller.h"
#include "can_comm.h"
#include "user_lib.h"
// standard
#include "stdint.h"
#include "arm_math.h" // 需要用到较多三角函数
#include "bsp_dwt.h"
static uint32_t balance_dwt_cnt;
static float balance_dt;
/* 底盘拥有的模块实例 */
static attitude_t *imu_data;
// static BMI088Instance *imu;
static SuperCapInstance *super_cap;
static referee_info_t *referee_data; // 裁判系统的数据会被不断更新
static Referee_Interactive_info_t my_uidata; // UI绘制数据,各种模式和状态/功率的显示
// 电机
static HTMotorInstance *lf, *rf, *lb, *rb;
static LKMotorInstance *l_driven, *r_driven;
// 底盘板和云台板通信
static CANCommInstance *chassis_comm; // 由于采用多板架构,即使使用C板也有空余串口,可以使用串口通信以获得更高的通信速率并降低阻塞
static Chassis_Ctrl_Cmd_s chassis_cmd_recv;
static Chassis_Upload_Data_s chassis_feed_send;
// 两个腿的参数,0为左腿,1为右腿
static LinkNPodParam left_side, right_side;
static PIDInstance swerving_pid; // 转向PID,有转向指令时使用IMU的加速度反馈积分以获取速度和位置状态量
static PIDInstance anti_crash_pid; // 抗劈叉,将输出以相反的方向叠加到左右腿的上
static PIDInstance leg_length_pid; // 用PD模拟弹簧,不要积分(弹簧是无积分二阶系统),增益不可过大否则抗外界冲击响应时太"硬"
static PIDInstance roll_compensate_pid; // roll轴补偿,用于保持机体水平
/* ↓↓↓分割出这些函数是为了提高可读性,使得阅读者的逻辑更加顺畅;但实际上这些函数都不长,可以以注释的形式直接加到BalanceTask里↓↓↓*/
/**
* @brief imu的数据组装为LinkNPodParam结构体
* @note ,使,,
* ,,
* @note HT04电机上电的编码器位置为零,Link2Pod()note,LIMIT_LINK_RAD的正负号
*
* @todo angle direction to be verified
*/
static void ParamAssemble()
{
left_side.phi1 = PI2 - LIMIT_LINK_RAD + lb->measure.total_angle;
left_side.phi4 = lf->measure.total_angle + LIMIT_LINK_RAD;
left_side.phi1_w = lb->measure.speed_rads;
left_side.phi4_w = lf->measure.speed_rads;
left_side.wheel_dist = l_driven->measure.total_angle / 360 * WHEEL_RADIUS * PI;
left_side.wheel_w = l_driven->measure.speed_rads;
// 电机的角度是逆时针为正,右侧全部取反
right_side.phi1 = PI2 - LIMIT_LINK_RAD - rb->measure.total_angle;
right_side.phi4 = -rf->measure.total_angle + LIMIT_LINK_RAD;
right_side.phi1_w = -rb->measure.speed_rads;
right_side.phi4_w = -rf->measure.speed_rads;
right_side.wheel_dist = -r_driven->measure.total_angle / 360 * WHEEL_RADIUS * PI;
right_side.wheel_w = -r_driven->measure.speed_rads;
// 若有转向指令,则使用IMU积分得到的速度,否则左右轮相反会产生阻碍转向的力矩
if (chassis_cmd_recv.wz != 0) // 此时相当于lqr的平衡环只对机体的速度响应
{
float vel_divide_R = imu_data->Accel[3] * balance_dt / WHEEL_RADIUS; // todo: 确定速度方向
left_side.wheel_w = vel_divide_R;
right_side.wheel_w = vel_divide_R;
} // 转向的时候不需要修正轮速
}
/**
* @brief ,
* @todo ,;
* VELOCITY_DIFF_VMC内的代码
*
* @note
* ___x anti-clockwise is positive for motor
* | _____
* |y / \
* \ /
* \ /
*
* @param p 5
*/
static void Link2Pod(LinkNPodParam *p)
{ // 拟将功能封装到vmc_project.h中
float xD, yD, xB, yB, BD, A0, B0, xC, yC, phi2t, phi5t;
xD = JOINT_DISTANCE + THIGH_LEN * arm_cos_f32(p->phi4);
yD = THIGH_LEN * arm_sin_f32(p->phi4);
xB = 0 + THIGH_LEN * arm_cos_f32(p->phi1);
yB = THIGH_LEN * arm_sin_f32(p->phi1);
BD = powf(xD - xB, 2) + powf(yD - yB, 2);
A0 = 2 * CALF_LEN * (xD - xB);
B0 = 2 * CALF_LEN * (yD - yB);
p->phi2 = 2 * atan2f(B0 + Sqrt(powf(A0, 2) + powf(B0, 2) - powf(BD, 2)), A0 + BD);
xC = xB + CALF_LEN * arm_cos_f32(p->phi2);
yC = yB + CALF_LEN * arm_sin_f32(p->phi2);
p->phi5 = atan2f(yC, xC - JOINT_DISTANCE / 2);
p->pod_len = Sqrt(powf(xC - JOINT_DISTANCE / 2, 2) + powf(yC, 2));
p->phi3 = atan2(yC - yD, xC - xD); // 稍后用于计算VMC
p->theta = p->phi5 - 0.5 * PI - imu_data->Pitch * DEGREE_2_RAD; // 确定方向
p->height = p->pod_len * arm_cos_f32(p->theta);
#ifdef VELOCITY_DIFF_VMC
float phi1_pred = p->phi1 + p->phi1_w * balance_dt; // 预测下一时刻的关节角度(利用关节角速度)
float phi4_pred = p->phi4 + p->phi4_w * balance_dt;
// 重新计算腿长和腿角度
xD = JOINT_DISTANCE + THIGH_LEN * arm_cos_f32(phi4_pred);
yD = THIGH_LEN * arm_sin_f32(phi4_pred);
xB = 0 + THIGH_LEN * arm_cos_f32(phi1_pred);
yB = THIGH_LEN * arm_sin_f32(phi1_pred);
BD = powf(xD - xB, 2) + powf(yD - yB, 2);
A0 = 2 * CALF_LEN * (xD - xB);
B0 = 2 * CALF_LEN * (yD - yB);
phi2t = 2 * atan2f(B0 + Sqrt(powf(A0, 2) + powf(B0, 2) - powf(BD, 2)), A0 + BD); // 不要用link->phi2,因为这里是预测的
xC = xB + CALF_LEN * arm_cos_f32(phi2t);
yC = yB + CALF_LEN * arm_sin_f32(phi2t);
phi5t = atan2f(yC, xC - JOINT_DISTANCE / 2);
// 差分计算腿长变化率和腿角速度
p->phi2_w = (phi2t - p->phi2) / balance_dt; // 稍后用于修正轮速
p->pod_w = (phi5t - p->phi5) / balance_dt;
p->pod_v = (Sqrt(powf(xC - JOINT_DISTANCE / 2, 2) + powf(yC, 2)) - p->pod_len) / balance_dt;
p->theta_w = (phi5t - 0.5 * PI - imu_data->Pitch * DEGREE_2_RAD - balance_dt * imu_data->Gyro[3] - p->theta) / balance_dt; //@todo 确定c板安装方向(BMI088);
p->height_v = p->pod_v * arm_cos_f32(p->theta) - p->pod_len * arm_sin_f32(p->theta) * p->theta_w; // 这很酷!PDE!
#endif
if (chassis_cmd_recv.wz == 0) // 没有转向控制指令,修正轮速. @todo 确定方向
p->wheel_w = (p->wheel_w - p->phi2_w + imu_data->Gyro[3]); // 注意此时单位仍然是rad/s, @todo 确定c板安装方向(BMI088);
// 此时使用的是电机编码器反馈的速度
}
/**
* @brief ,LQR的反馈增益,LQR的输出
* ,使,
*
* @note
* PID的反馈增益计算
*
* @todo 使
*
*/
static void CalcLQR(LinkNPodParam *p, float target_x)
{
float *gain_list = LookUpKgain(p->pod_len); // K11,K12... K21,K22... K26
float T[2]; // 0 T_wheel, 1 T_pod;
for (uint8_t i = 0; i < 2; i++)
{
T[i] = gain_list[i * 6 + 0] * -p->theta +
gain_list[i * 6 + 1] * -p->theta_w +
gain_list[i * 6 + 4] * -imu_data->Pitch * DEGREE_2_RAD +
gain_list[i * 6 + 5] * -imu_data->Gyro[1]; // @todo 待确定c板安装方向
if (chassis_cmd_recv.vx == 0 && chassis_cmd_recv.wz == 0) // 位置闭环仅在目标转向速度和水平速度都为零的情况下起作用
T[i] += gain_list[i * 6 + 2] * (target_x - p->wheel_dist); // 若速度为0,则加入位置闭环,以提供对外力更好的抵抗和复位
else
T[i] += gain_list[i * 6 + 3] * (chassis_cmd_recv.vx - p->wheel_w * WHEEL_RADIUS); // 若目标速度|角速度不为0,则只对速度闭环
} // 有转向指令的时候,轮速的来源是IMU,而不是编码器
p->T_wheel = T[0];
p->T_pod = T[1];
}
/**
* @brief :; :
* @todo
*/
static void SynthesizeMotion()
{
PIDCalculate(&anti_crash_pid, left_side.phi5 - right_side.phi5, 0);
left_side.T_pod += anti_crash_pid.Output;
right_side.T_pod -= anti_crash_pid.Output;
PIDCalculate(&swerving_pid, imu_data->Yaw, chassis_cmd_recv.wz); // 对速度闭环还是使用角度增量闭环?
left_side.T_wheel -= swerving_pid.Output;
right_side.T_wheel += swerving_pid.Output;
}
/**
* @brief :.PD模拟弹簧的传递函数
*
* @note 使,使
*/
static void LegControl(LinkNPodParam *p, float target_length)
{
p->F_pod += PIDCalculate(&leg_length_pid, p->height, target_length);
}
/**
* @brief roll轴补偿()
*
*/
static void RollCompensate()
{
PIDCalculate(&roll_compensate_pid, imu_data->Roll, 0);
left_side.F_pod += roll_compensate_pid.Output;
right_side.F_pod -= roll_compensate_pid.Output;
}
/**
* @brief T和F映射为关节电机输出
*
*/
static void VMCProject(LinkNPodParam *p)
{
float s23 = arm_sin_f32(p->phi2 - p->phi3);
float phi25 = p->phi2 - p->phi5;
float phi35 = p->phi3 - p->phi5;
float F_m_L = p->F_pod * p->pod_len;
p->T_back = -(THIGH_LEN * arm_sin_f32(p->phi1 - p->phi2) * (p->T_pod * arm_cos_f32(phi35) - F_m_L * arm_sin_f32(phi35))) / (p->pod_len * s23);
p->T_front = -(THIGH_LEN * arm_sin_f32(p->phi3 - p->phi4) * (p->T_pod * arm_cos_f32(phi25) - F_m_L * arm_sin_f32(phi25))) / (p->pod_len * s23);
}
/**
* @brief ??
*
*
*/
static uint8_t air_flag;
static void FlyDetect()
{
}
/**
* @brief ,;
*
*/
static void WattLimitSet()
{
// code to limit 9025's output
// ...
// 设定电机电流
HTMotorSetRef(lf, left_side.T_front);
HTMotorSetRef(lb, left_side.T_back);
HTMotorSetRef(rf, right_side.T_front);
HTMotorSetRef(rb, right_side.T_back);
LKMotorSetRef(l_driven, left_side.T_wheel);
LKMotorSetRef(r_driven, right_side.T_wheel);
}
void BalanceInit()
{ // IMU初始化
BMI088_Init_Config_s imu_config = {
.spi_acc_config = {
.GPIOx = GPIOC,
.cs_pin = GPIO_PIN_4,
.spi_handle = &hspi1,
},
.spi_gyro_config = {
.GPIOx = GPIOC,
.cs_pin = GPIO_PIN_4,
.spi_handle = &hspi1,
},
.heat_pid_config = {
.Kp = 0.0f,
.Kd = 0.0f,
.Ki = 0.0f,
.MaxOut = 0.0f,
.DeadBand = 0.0f,
},
.heat_pwm_config = {
.channel = TIM_CHANNEL_1,
.htim = &htim1,
},
.cali_mode = BMI088_CALIBRATE_ONLINE_MODE,
.work_mode = BMI088_BLOCK_PERIODIC_MODE,
};
// imu = BMI088Register(&imu_config);
imu_data = INS_Init();
SuperCap_Init_Config_s cap_conf = {
// 超级电容初始化
.can_config.can_handle = &hcan1,
.can_config.rx_id = 0x311,
.can_config.tx_id = 0x312,
};
super_cap = SuperCapInit(&cap_conf);
// ↓↓↓---------------关节电机初始化----------------↓↓↓
Motor_Init_Config_s joint_conf = {
// 写一个,剩下的修改方向和id即可
2023-04-21 13:48:25 +08:00
.can_init_config = {
.can_handle = &hcan1,
},
.controller_param_init_config = {
.current_PID = {
.Kp = 1,
},
},
.controller_setting_init_config = {
.close_loop_type = CURRENT_LOOP,
.outer_loop_type = CURRENT_LOOP,
.motor_reverse_flag = FEEDBACK_DIRECTION_NORMAL,
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
},
.motor_type = HT04,
};
2023-04-21 13:48:25 +08:00
joint_conf.can_init_config.tx_id = 1;
joint_conf.can_init_config.rx_id = 11;
lf = HTMotorInit(&joint_conf);
joint_conf.can_init_config.tx_id = 2;
joint_conf.can_init_config.rx_id = 12;
lb = HTMotorInit(&joint_conf);
2023-04-21 13:48:25 +08:00
joint_conf.can_init_config.tx_id = 3;
joint_conf.can_init_config.rx_id = 13;
rf = HTMotorInit(&joint_conf);
joint_conf.can_init_config.tx_id = 4;
joint_conf.can_init_config.rx_id = 14;
rb = HTMotorInit(&joint_conf);
// ↓↓↓---------------驱动电机初始化----------------↓↓↓
Motor_Init_Config_s driven_conf = {
// 写一个,剩下的修改方向和id即可
.can_init_config.can_handle = &hcan1,
.controller_param_init_config = {
.current_PID = {
2023-04-21 13:48:25 +08:00
.Kp = 274.348,
},
},
.controller_setting_init_config = {
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
.outer_loop_type = CURRENT_LOOP,
.close_loop_type = CURRENT_LOOP,
2023-04-21 13:48:25 +08:00
.motor_reverse_flag = MOTOR_DIRECTION_NORMAL,
},
.motor_type = LK9025,
};
driven_conf.can_init_config.tx_id = 1;
l_driven = LKMotorInit(&driven_conf);
driven_conf.can_init_config.tx_id = 2;
r_driven = LKMotorInit(&driven_conf);
CANComm_Init_Config_s chassis_comm_conf = {
// 底盘板和云台板通信
.can_config = {
.can_handle = &hcan1,
.rx_id = 0x201,
.tx_id = 0x200,
},
.send_data_len = sizeof(Chassis_Upload_Data_s),
.recv_data_len = sizeof(Chassis_Ctrl_Cmd_s),
};
chassis_comm = CANCommInit(&chassis_comm_conf);
referee_data = Referee_Interactive_init(&huart6, &my_uidata); // 裁判系统串口
// ↓↓↓---------------综合运动控制----------------↓↓↓
PID_Init_Config_s swerving_pid_conf = {
.Kp = 0.0f,
.Kd = 0.0f,
.Ki = 0.0f,
.MaxOut = 0.0f,
.DeadBand = 0.0f,
.Improve = PID_IMPROVE_NONE,
};
PIDInit(&swerving_pid, &swerving_pid_conf);
PID_Init_Config_s anti_crash_pid_conf = {
.Kp = 0.0f,
.Kd = 0.0f,
.Ki = 0.0f,
.MaxOut = 0.0f,
.DeadBand = 0.0f,
.Improve = PID_IMPROVE_NONE,
};
PIDInit(&swerving_pid, &swerving_pid_conf);
PID_Init_Config_s leg_length_pid_conf = {
.Kp = 0.0f,
.Kd = 0.0f,
.Ki = 0.0f,
.MaxOut = 0.0f,
.DeadBand = 0.0f,
.Improve = PID_IMPROVE_NONE,
};
PIDInit(&leg_length_pid, &leg_length_pid_conf);
PID_Init_Config_s roll_compensate_pid_conf = {
.Kp = 0.0f,
.Kd = 0.0f,
.Ki = 0.0f,
.MaxOut = 0.0f,
.DeadBand = 0.0f,
.Improve = PID_IMPROVE_NONE,
};
PIDInit(&roll_compensate_pid, &roll_compensate_pid_conf);
}
/* balanceTask可能需要以更高频率运行,以提高线性化的精确程度 */
void BalanceTask()
{
chassis_cmd_recv = *(Chassis_Ctrl_Cmd_s *)CANCommGet(chassis_comm);
if (chassis_cmd_recv.chassis_mode == CHASSIS_ZERO_FORCE)
{
HTMotorStop(lf);
HTMotorStop(rf);
HTMotorStop(lb);
HTMotorStop(rb);
LKMotorStop(l_driven);
LKMotorStop(r_driven);
}
else
{
HTMotorEnable(lf);
HTMotorEnable(rf);
HTMotorEnable(lb);
HTMotorEnable(rb);
LKMotorEnable(l_driven);
LKMotorEnable(r_driven);
}
ParamAssemble(); // 参数组装,将电机和IMU的参数组装到一起
// 将五连杆映射成单杆
Link2Pod(&left_side);
Link2Pod(&right_side);
// 根据单杆计算处的角度和杆长,计算反馈增益
CalcLQR(&left_side, chassis_cmd_recv.vx); // @todo,需要确定速度or位置闭环
CalcLQR(&right_side, chassis_cmd_recv.vx);
// 腿长控制
LegControl(&left_side, 0);
LegControl(&right_side, 0);
// 综合运动控制,转向+抗劈叉
SynthesizeMotion(); // 两边要一起
// 俯仰角补偿,保持机体水平
RollCompensate(); // 两边也要一起
// VMC映射成关节输出
VMCProject(&left_side);
VMCProject(&right_side);
FlyDetect(); // 滞空检测,尝试使用加速度计自由落体时量测值小?
WattLimitSet(); // 电机输出限幅
// code to go here... 裁判系统,UI,多机通信
CANCommSend(chassis_comm, (uint8_t *)&chassis_feed_send);
}