sentry_chassis_hzz/modules/algorithm/controller.c

505 lines
13 KiB
C

/**
******************************************************************************
* @file controller.c
* @author Wang Hongxi
* @version V1.1.3
* @date 2021/7/3
* @brief DWT定时器用于计算控制周期 OLS用于提取信号微分
******************************************************************************
* @attention
*
******************************************************************************
*/
#include "controller.h"
/******************************* PID CONTROL *********************************/
// PID优化环节函数声明
static void f_Trapezoid_Intergral(PID_t *pid);
static void f_Integral_Limit(PID_t *pid);
static void f_Derivative_On_Measurement(PID_t *pid);
static void f_Changing_Integration_Rate(PID_t *pid);
static void f_Output_Filter(PID_t *pid);
static void f_Derivative_Filter(PID_t *pid);
static void f_Output_Limit(PID_t *pid);
static void f_Proportion_Limit(PID_t *pid);
static void f_PID_ErrorHandle(PID_t *pid);
/**
* @brief PID初始化 PID initialize
* @param[in] PID结构体 PID structure
* @param[in] 略
* @retval 返回空 null
*/
void PID_Init(
PID_t *pid,
float max_out,
float intergral_limit,
float deadband,
float kp,
float Ki,
float Kd,
float A,
float B,
float output_lpf_rc,
float derivative_lpf_rc,
uint16_t ols_order,
uint8_t improve)
{
pid->DeadBand = deadband;
pid->IntegralLimit = intergral_limit;
pid->MaxOut = max_out;
pid->Ref = 0;
pid->Kp = kp;
pid->Ki = Ki;
pid->Kd = Kd;
pid->ITerm = 0;
// 变速积分参数
// coefficient of changing integration rate
pid->CoefA = A;
pid->CoefB = B;
pid->Output_LPF_RC = output_lpf_rc;
pid->Derivative_LPF_RC = derivative_lpf_rc;
// 最小二乘提取信号微分初始化
// differential signal is distilled by OLS
pid->OLS_Order = ols_order;
OLS_Init(&pid->OLS, ols_order);
// DWT定时器计数变量清零
// reset DWT Timer count counter
pid->DWT_CNT = 0;
// 设置PID优化环节
pid->Improve = improve;
// 设置PID异常处理 目前仅包含电机堵转保护
pid->ERRORHandler.ERRORCount = 0;
pid->ERRORHandler.ERRORType = PID_ERROR_NONE;
pid->Output = 0;
}
/**
* @brief PID计算
* @param[in] PID结构体
* @param[in] 测量值
* @param[in] 期望值
* @retval 返回空
*/
float PID_Calculate(PID_t *pid, float measure, float ref)
{
if (pid->Improve & ErrorHandle)
f_PID_ErrorHandle(pid);
pid->dt = DWT_GetDeltaT((void *)&pid->DWT_CNT);
pid->Measure = measure;
pid->Ref = ref;
pid->Err = pid->Ref - pid->Measure;
if (pid->User_Func1_f != NULL)
pid->User_Func1_f(pid);
if (abs(pid->Err) > pid->DeadBand)
{
pid->Pout = pid->Kp * pid->Err;
pid->ITerm = pid->Ki * pid->Err * pid->dt;
if (pid->OLS_Order > 2)
pid->Dout = pid->Kd * OLS_Derivative(&pid->OLS, pid->dt, pid->Err);
else
pid->Dout = pid->Kd * (pid->Err - pid->Last_Err) / pid->dt;
if (pid->User_Func2_f != NULL)
pid->User_Func2_f(pid);
// 梯形积分
if (pid->Improve & Trapezoid_Intergral)
f_Trapezoid_Intergral(pid);
// 变速积分
if (pid->Improve & ChangingIntegrationRate)
f_Changing_Integration_Rate(pid);
// 微分先行
if (pid->Improve & Derivative_On_Measurement)
f_Derivative_On_Measurement(pid);
// 微分滤波器
if (pid->Improve & DerivativeFilter)
f_Derivative_Filter(pid);
// 积分限幅
if (pid->Improve & Integral_Limit)
f_Integral_Limit(pid);
pid->Iout += pid->ITerm;
pid->Output = pid->Pout + pid->Iout + pid->Dout;
// 输出滤波
if (pid->Improve & OutputFilter)
f_Output_Filter(pid);
// 输出限幅
f_Output_Limit(pid);
// 无关紧要
f_Proportion_Limit(pid);
}
pid->Last_Measure = pid->Measure;
pid->Last_Output = pid->Output;
pid->Last_Dout = pid->Dout;
pid->Last_Err = pid->Err;
pid->Last_ITerm = pid->ITerm;
return pid->Output;
}
static void f_Trapezoid_Intergral(PID_t *pid)
{
pid->ITerm = pid->Ki * ((pid->Err + pid->Last_Err) / 2) * pid->dt;
}
static void f_Changing_Integration_Rate(PID_t *pid)
{
if (pid->Err * pid->Iout > 0)
{
// 积分呈累积趋势
// Integral still increasing
if (abs(pid->Err) <= pid->CoefB)
return; // Full integral
if (abs(pid->Err) <= (pid->CoefA + pid->CoefB))
pid->ITerm *= (pid->CoefA - abs(pid->Err) + pid->CoefB) / pid->CoefA;
else
pid->ITerm = 0;
}
}
static void f_Integral_Limit(PID_t *pid)
{
static float temp_Output, temp_Iout;
temp_Iout = pid->Iout + pid->ITerm;
temp_Output = pid->Pout + pid->Iout + pid->Dout;
if (abs(temp_Output) > pid->MaxOut)
{
if (pid->Err * pid->Iout > 0)
{
// 积分呈累积趋势
// Integral still increasing
pid->ITerm = 0;
}
}
if (temp_Iout > pid->IntegralLimit)
{
pid->ITerm = 0;
pid->Iout = pid->IntegralLimit;
}
if (temp_Iout < -pid->IntegralLimit)
{
pid->ITerm = 0;
pid->Iout = -pid->IntegralLimit;
}
}
static void f_Derivative_On_Measurement(PID_t *pid)
{
if (pid->OLS_Order > 2)
pid->Dout = pid->Kd * OLS_Derivative(&pid->OLS, pid->dt, -pid->Measure);
else
pid->Dout = pid->Kd * (pid->Last_Measure - pid->Measure) / pid->dt;
}
static void f_Derivative_Filter(PID_t *pid)
{
pid->Dout = pid->Dout * pid->dt / (pid->Derivative_LPF_RC + pid->dt) +
pid->Last_Dout * pid->Derivative_LPF_RC / (pid->Derivative_LPF_RC + pid->dt);
}
static void f_Output_Filter(PID_t *pid)
{
pid->Output = pid->Output * pid->dt / (pid->Output_LPF_RC + pid->dt) +
pid->Last_Output * pid->Output_LPF_RC / (pid->Output_LPF_RC + pid->dt);
}
static void f_Output_Limit(PID_t *pid)
{
if (pid->Output > pid->MaxOut)
{
pid->Output = pid->MaxOut;
}
if (pid->Output < -(pid->MaxOut))
{
pid->Output = -(pid->MaxOut);
}
}
static void f_Proportion_Limit(PID_t *pid)
{
if (pid->Pout > pid->MaxOut)
{
pid->Pout = pid->MaxOut;
}
if (pid->Pout < -(pid->MaxOut))
{
pid->Pout = -(pid->MaxOut);
}
}
// PID ERRORHandle Function
static void f_PID_ErrorHandle(PID_t *pid)
{
/*Motor Blocked Handle*/
if (pid->Output < pid->MaxOut * 0.001f || fabsf(pid->Ref) < 0.0001f)
return;
if ((fabsf(pid->Ref - pid->Measure) / fabsf(pid->Ref)) > 0.95f)
{
// Motor blocked counting
pid->ERRORHandler.ERRORCount++;
}
else
{
pid->ERRORHandler.ERRORCount = 0;
}
if (pid->ERRORHandler.ERRORCount > 500)
{
// Motor blocked over 1000times
pid->ERRORHandler.ERRORType = Motor_Blocked;
}
}
/*************************** FEEDFORWARD CONTROL *****************************/
/**
* @brief 前馈控制初始化
* @param[in] 前馈控制结构体
* @param[in] 略
* @retval 返回空
*/
void Feedforward_Init(
Feedforward_t *ffc,
float max_out,
float *c,
float lpf_rc,
uint16_t ref_dot_ols_order,
uint16_t ref_ddot_ols_order)
{
ffc->MaxOut = max_out;
// 设置前馈控制器参数 详见前馈控制结构体定义
// set parameters of feed-forward controller (see struct definition)
if (c != NULL && ffc != NULL)
{
ffc->c[0] = c[0];
ffc->c[1] = c[1];
ffc->c[2] = c[2];
}
else
{
ffc->c[0] = 0;
ffc->c[1] = 0;
ffc->c[2] = 0;
ffc->MaxOut = 0;
}
ffc->LPF_RC = lpf_rc;
// 最小二乘提取信号微分初始化
// differential signal is distilled by OLS
ffc->Ref_dot_OLS_Order = ref_dot_ols_order;
ffc->Ref_ddot_OLS_Order = ref_ddot_ols_order;
if (ref_dot_ols_order > 2)
OLS_Init(&ffc->Ref_dot_OLS, ref_dot_ols_order);
if (ref_ddot_ols_order > 2)
OLS_Init(&ffc->Ref_ddot_OLS, ref_ddot_ols_order);
ffc->DWT_CNT = 0;
ffc->Output = 0;
}
/**
* @brief PID计算
* @param[in] PID结构体
* @param[in] 测量值
* @param[in] 期望值
* @retval 返回空
*/
float Feedforward_Calculate(Feedforward_t *ffc, float ref)
{
ffc->dt = DWT_GetDeltaT((void *)&ffc->DWT_CNT);
ffc->Ref = ref * ffc->dt / (ffc->LPF_RC + ffc->dt) +
ffc->Ref * ffc->LPF_RC / (ffc->LPF_RC + ffc->dt);
// 计算一阶导数
// calculate first derivative
if (ffc->Ref_dot_OLS_Order > 2)
ffc->Ref_dot = OLS_Derivative(&ffc->Ref_dot_OLS, ffc->dt, ffc->Ref);
else
ffc->Ref_dot = (ffc->Ref - ffc->Last_Ref) / ffc->dt;
// 计算二阶导数
// calculate second derivative
if (ffc->Ref_ddot_OLS_Order > 2)
ffc->Ref_ddot = OLS_Derivative(&ffc->Ref_ddot_OLS, ffc->dt, ffc->Ref_dot);
else
ffc->Ref_ddot = (ffc->Ref_dot - ffc->Last_Ref_dot) / ffc->dt;
// 计算前馈控制输出
// calculate feed-forward controller output
ffc->Output = ffc->c[0] * ffc->Ref + ffc->c[1] * ffc->Ref_dot + ffc->c[2] * ffc->Ref_ddot;
ffc->Output = float_constrain(ffc->Output, -ffc->MaxOut, ffc->MaxOut);
ffc->Last_Ref = ffc->Ref;
ffc->Last_Ref_dot = ffc->Ref_dot;
return ffc->Output;
}
/*************************LINEAR DISTURBANCE OBSERVER *************************/
void LDOB_Init(
LDOB_t *ldob,
float max_d,
float deadband,
float *c,
float lpf_rc,
uint16_t measure_dot_ols_order,
uint16_t measure_ddot_ols_order)
{
ldob->Max_Disturbance = max_d;
ldob->DeadBand = deadband;
// 设置线性扰动观测器参数 详见LDOB结构体定义
// set parameters of linear disturbance observer (see struct definition)
if (c != NULL && ldob != NULL)
{
ldob->c[0] = c[0];
ldob->c[1] = c[1];
ldob->c[2] = c[2];
}
else
{
ldob->c[0] = 0;
ldob->c[1] = 0;
ldob->c[2] = 0;
ldob->Max_Disturbance = 0;
}
// 设置Q(s)带宽 Q(s)选用一阶惯性环节
// set bandwidth of Q(s) Q(s) is chosen as a first-order low-pass form
ldob->LPF_RC = lpf_rc;
// 最小二乘提取信号微分初始化
// differential signal is distilled by OLS
ldob->Measure_dot_OLS_Order = measure_dot_ols_order;
ldob->Measure_ddot_OLS_Order = measure_ddot_ols_order;
if (measure_dot_ols_order > 2)
OLS_Init(&ldob->Measure_dot_OLS, measure_dot_ols_order);
if (measure_ddot_ols_order > 2)
OLS_Init(&ldob->Measure_ddot_OLS, measure_ddot_ols_order);
ldob->DWT_CNT = 0;
ldob->Disturbance = 0;
}
float LDOB_Calculate(LDOB_t *ldob, float measure, float u)
{
ldob->dt = DWT_GetDeltaT((void *)&ldob->DWT_CNT);
ldob->Measure = measure;
ldob->u = u;
// 计算一阶导数
// calculate first derivative
if (ldob->Measure_dot_OLS_Order > 2)
ldob->Measure_dot = OLS_Derivative(&ldob->Measure_dot_OLS, ldob->dt, ldob->Measure);
else
ldob->Measure_dot = (ldob->Measure - ldob->Last_Measure) / ldob->dt;
// 计算二阶导数
// calculate second derivative
if (ldob->Measure_ddot_OLS_Order > 2)
ldob->Measure_ddot = OLS_Derivative(&ldob->Measure_ddot_OLS, ldob->dt, ldob->Measure_dot);
else
ldob->Measure_ddot = (ldob->Measure_dot - ldob->Last_Measure_dot) / ldob->dt;
// 估计总扰动
// estimate external disturbances and internal disturbances caused by model uncertainties
ldob->Disturbance = ldob->c[0] * ldob->Measure + ldob->c[1] * ldob->Measure_dot + ldob->c[2] * ldob->Measure_ddot - ldob->u;
ldob->Disturbance = ldob->Disturbance * ldob->dt / (ldob->LPF_RC + ldob->dt) +
ldob->Last_Disturbance * ldob->LPF_RC / (ldob->LPF_RC + ldob->dt);
ldob->Disturbance = float_constrain(ldob->Disturbance, -ldob->Max_Disturbance, ldob->Max_Disturbance);
// 扰动输出死区
// deadband of disturbance output
if (abs(ldob->Disturbance) > ldob->DeadBand * ldob->Max_Disturbance)
ldob->Output = ldob->Disturbance;
else
ldob->Output = 0;
ldob->Last_Measure = ldob->Measure;
ldob->Last_Measure_dot = ldob->Measure_dot;
ldob->Last_Disturbance = ldob->Disturbance;
return ldob->Output;
}
/*************************** Tracking Differentiator ***************************/
void TD_Init(TD_t *td, float r, float h0)
{
td->r = r;
td->h0 = h0;
td->x = 0;
td->dx = 0;
td->ddx = 0;
td->last_dx = 0;
td->last_ddx = 0;
}
float TD_Calculate(TD_t *td, float input)
{
static float d, a0, y, a1, a2, a, fhan;
td->dt = DWT_GetDeltaT((void *)&td->DWT_CNT);
if (td->dt > 0.5f)
return 0;
td->Input = input;
d = td->r * td->h0 * td->h0;
a0 = td->dx * td->h0;
y = td->x - td->Input + a0;
a1 = sqrt(d * (d + 8 * abs(y)));
a2 = a0 + sign(y) * (a1 - d) / 2;
a = (a0 + y) * (sign(y + d) - sign(y - d)) / 2 + a2 * (1 - (sign(y + d) - sign(y - d)) / 2);
fhan = -td->r * a / d * (sign(a + d) - sign(a - d)) / 2 -
td->r * sign(a) * (1 - (sign(a + d) - sign(a - d)) / 2);
td->ddx = fhan;
td->dx += (td->ddx + td->last_ddx) * td->dt / 2;
td->x += (td->dx + td->last_dx) * td->dt / 2;
td->last_ddx = td->ddx;
td->last_dx = td->dx;
return td->x;
}