122 lines
4.3 KiB
C
122 lines
4.3 KiB
C
#include "bsp_can.h"
|
|
#include "main.h"
|
|
#include <stdlib.h>
|
|
#include "memory.h"
|
|
|
|
static can_instance* instance[MX_REGISTER_DEVICE_CNT];
|
|
|
|
/**
|
|
* @brief add filter to receive mesg with specific ID,called by CANRegister()
|
|
*
|
|
* @note there are total 28 filter and 2 FIFO in bxCAN of STM32F4 series product.
|
|
* here, we assign the former 14 to CAN1 and the rest for CAN2
|
|
* when initializing, module with odd ID will be assigned to FIFO0 while even one to FIFO1
|
|
* those modules which registered in CAN1 would use Filter0-13, while CAN2 use Filter14-27
|
|
*
|
|
* @attention you don't have to fully understand what this function done, cause it is basically
|
|
* for initialization.Enjoy developing without caring about the infrastructure!
|
|
* if you really want to know what is happeng, contact author.
|
|
*
|
|
* @param _instance can instance owned by specific module
|
|
*/
|
|
static void CANAddFilter(can_instance* _instance)
|
|
{
|
|
CAN_FilterTypeDef can_filter_conf;
|
|
static uint8_t can1_filter_idx=0,can2_filter_idx=14;
|
|
|
|
can_filter_conf.FilterMode = CAN_FILTERMODE_IDLIST;
|
|
can_filter_conf.FilterScale = CAN_FILTERSCALE_16BIT;
|
|
can_filter_conf.FilterFIFOAssignment = (_instance->rx_id & 1) ? CAN_RX_FIFO0 : CAN_RX_FIFO1;
|
|
can_filter_conf.SlaveStartFilterBank = 14;
|
|
can_filter_conf.FilterIdLow = _instance->rx_id << 5;
|
|
can_filter_conf.FilterBank = _instance->can_handle==&hcan1?(can1_filter_idx++):(can2_filter_idx++);
|
|
can_filter_conf.FilterActivation = CAN_FILTER_ENABLE;
|
|
|
|
HAL_CAN_ConfigFilter(_instance->can_handle, &can_filter_conf);
|
|
}
|
|
|
|
/**
|
|
* @brief called by CANRegister before the first module being registered
|
|
*
|
|
* @note this func will handle all these thing automatically
|
|
* there is no need to worry about hardware initialization, we do these for you!
|
|
*
|
|
*/
|
|
static void CANServiceInit()
|
|
{
|
|
HAL_CAN_Start(&hcan1);
|
|
HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING);
|
|
HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO1_MSG_PENDING);
|
|
HAL_CAN_Start(&hcan2);
|
|
HAL_CAN_ActivateNotification(&hcan2, CAN_IT_RX_FIFO0_MSG_PENDING);
|
|
HAL_CAN_ActivateNotification(&hcan2, CAN_IT_RX_FIFO1_MSG_PENDING);
|
|
}
|
|
|
|
void CANRegister(can_instance* _instance)
|
|
{
|
|
static uint8_t instance_idx;
|
|
if(!instance_idx)
|
|
{
|
|
CANServiceInit();
|
|
}
|
|
_instance->rx_buff=(uint8_t*)malloc(8*sizeof(uint8_t));
|
|
_instance->tx_buff=(uint8_t*)malloc(8*sizeof(uint8_t));
|
|
CANAddFilter(_instance);
|
|
instance[instance_idx++]=_instance;
|
|
}
|
|
|
|
void CANTransmit(can_instance* _instance)
|
|
{
|
|
CAN_TxHeaderTypeDef txconf;
|
|
txconf.StdId=_instance->tx_id;
|
|
txconf.IDE=CAN_ID_STD;
|
|
txconf.RTR=CAN_RTR_DATA;
|
|
txconf.DLC=0x08;
|
|
while (HAL_CAN_GetTxMailboxesFreeLevel(_instance->can_handle) == 0);
|
|
HAL_CAN_AddTxMessage(_instance->can_handle, &txconf, _instance->tx_buff, &_instance->tx_mailbox);
|
|
}
|
|
|
|
/**
|
|
* @brief this func will recv data from @param:fifox to a tmp can_rx_buff
|
|
* then, all the instances will be polling to check which should recv this pack of data
|
|
*
|
|
* @param _hcan
|
|
* @param fifox passed to HAL_CAN_GetRxMessage() to get mesg from a specific fifo
|
|
*/
|
|
static void CANFIFOxCallback(CAN_HandleTypeDef* _hcan,uint32_t fifox)
|
|
{
|
|
uint8_t can_rx_buff[8];
|
|
CAN_RxHeaderTypeDef rxconf;
|
|
HAL_CAN_GetRxMessage(_hcan,fifox,&rxconf,can_rx_buff);
|
|
for (size_t i = 0; i < DEVICE_CAN_CNT; i++)
|
|
{
|
|
if(_hcan==instance[i]->can_handle && rxconf.StdId==instance[i]->rx_id)
|
|
{
|
|
memcpy(instance[i]->rx_buff,can_rx_buff,8);
|
|
instance[i]->can_module_callback(instance[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ATTENTION: two CAN device in STM32 share two FIFO */
|
|
/* functions below will call CANFIFOxCallback() to further process message from a specific CAN device */
|
|
/**
|
|
* @brief rx fifo callback. Once FIFO_0 is full,this func would be called
|
|
*
|
|
* @param hcan CAN handle indicate which device the oddest mesg in FIFO_0 comes from
|
|
*/
|
|
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
|
|
{
|
|
CANFIFOxCallback(hcan, CAN_RX_FIFO0);
|
|
}
|
|
|
|
/**
|
|
* @brief rx fifo callback. Once FIFO_1 is full,this func would be called
|
|
*
|
|
* @param hcan CAN handle indicate which device the oddest mesg in FIFO_1 comes from
|
|
*/
|
|
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
|
|
{
|
|
CANFIFOxCallback(hcan, CAN_RX_FIFO1);
|
|
} |