267 lines
11 KiB
C
267 lines
11 KiB
C
/**
|
|
* @file chassis.c
|
|
* @author NeoZeng neozng1@hnu.edu.cn
|
|
* @brief 底盘应用,负责接收robot_cmd的控制命令并根据命令进行运动学解算,得到输出
|
|
* 注意底盘采取右手系,对于平面视图,底盘纵向运动的正前方为x正方向;横向运动的右侧为y正方向
|
|
*
|
|
* @version 0.1
|
|
* @date 2022-12-04
|
|
*
|
|
* @copyright Copyright (c) 2022
|
|
*
|
|
*/
|
|
|
|
#include "chassis.h"
|
|
#include "robot_def.h"
|
|
#include "dji_motor.h"
|
|
#include "super_cap.h"
|
|
#include "message_center.h"
|
|
|
|
// referee需要移动到module层
|
|
/////////////////////////
|
|
#include "referee.h"
|
|
#include "rm_referee.h"
|
|
/////////////////////////
|
|
|
|
#include "general_def.h"
|
|
#include "bsp_dwt.h"
|
|
#include "referee_UI.h"
|
|
#include "arm_math.h"
|
|
|
|
/* 根据robot_def.h中的macro自动计算的参数 */
|
|
#define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f) // 半轴距
|
|
#define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f) // 半轮距
|
|
#define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI) // 轮子周长
|
|
|
|
/* 底盘应用包含的模块和信息存储,底盘是单例模式,因此不需要为底盘建立单独的结构体 */
|
|
#ifdef CHASSIS_BOARD // 如果是底盘板,使用板载IMU获取底盘转动角速度
|
|
#include "can_comm.h"
|
|
#include "ins_task.h"
|
|
static CANCommInstance *chasiss_can_comm; // 双板通信CAN comm
|
|
attitude_t *Chassis_IMU_data;
|
|
#endif // CHASSIS_BOARD
|
|
#ifdef ONE_BOARD
|
|
static Publisher_t *chassis_pub; // 用于发布底盘的数据
|
|
static Subscriber_t *chassis_sub; // 用于订阅底盘的控制命令
|
|
#endif // !ONE_BOARD
|
|
static Chassis_Ctrl_Cmd_s chassis_cmd_recv; // 底盘接收到的控制命令
|
|
static Chassis_Upload_Data_s chassis_feedback_data; // 底盘回传的反馈数据
|
|
|
|
// static referee_info_t *referee_data; // 裁判系统相关数据
|
|
static SuperCapInstance *cap; // 超级电容
|
|
static DJIMotorInstance *motor_lf; // left right forward back
|
|
static DJIMotorInstance *motor_rf;
|
|
static DJIMotorInstance *motor_lb;
|
|
static DJIMotorInstance *motor_rb;
|
|
|
|
/* 用于自旋变速策略的时间变量,后续考虑查表加速 */
|
|
// static float t;
|
|
|
|
/* 私有函数计算的中介变量,设为静态避免参数传递的开销 */
|
|
static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘
|
|
static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅
|
|
|
|
void ChassisInit()
|
|
{
|
|
// 四个轮子的参数一样,改tx_id和反转标志位即可
|
|
Motor_Init_Config_s chassis_motor_config = {
|
|
.can_init_config.can_handle = &hcan1,
|
|
.controller_param_init_config = {
|
|
.speed_PID = {
|
|
.Kp = 4.5,//9
|
|
.Ki = 0,//0.02
|
|
.Kd = 0.01,//0.01
|
|
.IntegralLimit = 3000,
|
|
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit |PID_Derivative_On_Measurement,
|
|
.MaxOut = 12000,
|
|
},
|
|
.current_PID = {
|
|
.Kp = 0.4,//0.7
|
|
.Ki = 0,//0.1
|
|
.Kd = 0,
|
|
.IntegralLimit = 3000,
|
|
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit |PID_Derivative_On_Measurement,
|
|
.MaxOut = 15000,
|
|
},
|
|
},
|
|
.controller_setting_init_config = {
|
|
.angle_feedback_source = MOTOR_FEED,
|
|
.speed_feedback_source = MOTOR_FEED,
|
|
.outer_loop_type = SPEED_LOOP,
|
|
.close_loop_type = SPEED_LOOP | CURRENT_LOOP,
|
|
},
|
|
.motor_type = M3508,
|
|
};
|
|
// @todo: 当前还没有设置电机的正反转,仍然需要手动添加reference的正负号,需要电机module的支持,待修改.
|
|
chassis_motor_config.can_init_config.tx_id = 1;
|
|
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE;
|
|
motor_lf = DJIMotorInit(&chassis_motor_config);
|
|
|
|
chassis_motor_config.can_init_config.tx_id = 2;
|
|
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE;
|
|
motor_rf = DJIMotorInit(&chassis_motor_config);
|
|
|
|
chassis_motor_config.can_init_config.tx_id = 4;
|
|
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE;
|
|
motor_lb = DJIMotorInit(&chassis_motor_config);
|
|
|
|
chassis_motor_config.can_init_config.tx_id = 3;
|
|
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE;
|
|
motor_rb = DJIMotorInit(&chassis_motor_config);
|
|
|
|
// referee_data = RefereeInit(&huart6); // 裁判系统初始化
|
|
|
|
// while (referee_data->GameRobotState.robot_id ==0);
|
|
// Referee_Interactive_init(referee_data);
|
|
|
|
|
|
SuperCap_Init_Config_s cap_conf = {
|
|
.can_config = {
|
|
.can_handle = &hcan2,
|
|
.tx_id = 0x302, // 超级电容默认接收id
|
|
.rx_id = 0x301, // 超级电容默认发送id,注意tx和rx在其他人看来是反的
|
|
}};
|
|
cap = SuperCapInit(&cap_conf); // 超级电容初始化
|
|
|
|
// 发布订阅初始化,如果为双板,则需要can comm来传递消息
|
|
#ifdef CHASSIS_BOARD
|
|
Chassis_IMU_data = INS_Init(); // 底盘IMU初始化
|
|
|
|
CANComm_Init_Config_s comm_conf = {
|
|
.can_config = {
|
|
.can_handle = &hcan2,
|
|
.tx_id = 0x311,
|
|
.rx_id = 0x312,
|
|
},
|
|
.recv_data_len = sizeof(Chassis_Ctrl_Cmd_s),
|
|
.send_data_len = sizeof(Chassis_Upload_Data_s),
|
|
};
|
|
chasiss_can_comm = CANCommInit(&comm_conf); // can comm初始化
|
|
#endif // CHASSIS_BOARD
|
|
|
|
#ifdef ONE_BOARD // 单板控制整车,则通过pubsub来传递消息
|
|
chassis_sub = SubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
|
|
chassis_pub = PubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
|
|
#endif // ONE_BOARD
|
|
}
|
|
|
|
#define LF_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * ANGLE_2_RAD)
|
|
#define RF_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * ANGLE_2_RAD)
|
|
#define LB_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * ANGLE_2_RAD)
|
|
#define RB_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * ANGLE_2_RAD)
|
|
/**
|
|
* @brief 计算每个轮毂电机的输出,正运动学解算
|
|
* 用宏进行预替换减小开销,运动解算具体过程参考教程
|
|
*/
|
|
static void MecanumCalculate()
|
|
{
|
|
vt_lf = -chassis_vx - chassis_vy - chassis_cmd_recv.wz * LF_CENTER;
|
|
vt_rf = -chassis_vx + chassis_vy - chassis_cmd_recv.wz * RF_CENTER;
|
|
vt_lb = chassis_vx - chassis_vy -chassis_cmd_recv.wz * LB_CENTER;
|
|
vt_rb = chassis_vx + chassis_vy - chassis_cmd_recv.wz * RB_CENTER;
|
|
}
|
|
|
|
/**
|
|
* @brief 根据裁判系统和电容剩余容量对输出进行限制并设置电机参考值
|
|
*
|
|
*/
|
|
static void LimitChassisOutput()
|
|
{
|
|
// 功率限制待添加
|
|
// referee_data->PowerHeatData.chassis_power;
|
|
// referee_data->PowerHeatData.chassis_power_buffer;
|
|
|
|
// 完成功率限制后进行电机参考输入设定
|
|
DJIMotorSetRef(motor_lf, vt_lf);
|
|
DJIMotorSetRef(motor_rf, vt_rf);
|
|
DJIMotorSetRef(motor_lb, vt_lb);
|
|
DJIMotorSetRef(motor_rb, vt_rb);
|
|
}
|
|
|
|
/**
|
|
* @brief 根据每个轮子的速度反馈,计算底盘的实际运动速度,逆运动解算
|
|
* 对于双板的情况,考虑增加来自底盘板IMU的数据
|
|
*
|
|
*/
|
|
static void EstimateSpeed()
|
|
{
|
|
// 根据电机速度和陀螺仪的角速度进行解算,还可以利用加速度计判断是否打滑(如果有)
|
|
// chassis_feedback_data.vx vy wz =
|
|
// ...
|
|
}
|
|
|
|
/* 机器人底盘控制核心任务 */
|
|
void ChassisTask()
|
|
{
|
|
// 后续增加没收到消息的处理(双板的情况)
|
|
// 获取新的控制信息
|
|
#ifdef ONE_BOARD
|
|
SubGetMessage(chassis_sub, &chassis_cmd_recv);
|
|
#endif
|
|
#ifdef CHASSIS_BOARD
|
|
chassis_cmd_recv = *(Chassis_Ctrl_Cmd_s *)CANCommGet(chasiss_can_comm);
|
|
#endif // CHASSIS_BOARD
|
|
|
|
if (chassis_cmd_recv.chassis_mode == CHASSIS_ZERO_FORCE)
|
|
{ // 如果出现重要模块离线或遥控器设置为急停,让电机停止
|
|
DJIMotorStop(motor_lf);
|
|
DJIMotorStop(motor_rf);
|
|
DJIMotorStop(motor_lb);
|
|
DJIMotorStop(motor_rb);
|
|
}
|
|
else
|
|
{ // 正常工作
|
|
DJIMotorEnable(motor_lf);
|
|
DJIMotorEnable(motor_rf);
|
|
DJIMotorEnable(motor_lb);
|
|
DJIMotorEnable(motor_rb);
|
|
}
|
|
|
|
// 根据控制模式设定旋转速度
|
|
switch (chassis_cmd_recv.chassis_mode)
|
|
{
|
|
case CHASSIS_NO_FOLLOW: // 底盘不旋转,但维持全向机动,一般用于调整云台姿态
|
|
chassis_cmd_recv.wz = 0;
|
|
break;
|
|
case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出
|
|
chassis_cmd_recv.wz = -1.5*chassis_cmd_recv.offset_angle*abs(chassis_cmd_recv.offset_angle);
|
|
break;
|
|
case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
|
|
chassis_cmd_recv.wz=4000;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
|
|
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
|
|
static float sin_theta, cos_theta;
|
|
cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD);
|
|
sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD);
|
|
chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta;
|
|
chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta;
|
|
|
|
// 根据控制模式进行正运动学解算,计算底盘输出
|
|
MecanumCalculate();
|
|
|
|
// 根据裁判系统的反馈数据和电容数据对输出限幅并设定闭环参考值
|
|
LimitChassisOutput();
|
|
|
|
// 根据电机的反馈速度和IMU(如果有)计算真实速度
|
|
EstimateSpeed();
|
|
|
|
// // 获取裁判系统数据 建议将裁判系统与底盘分离,所以此处数据应使用消息中心发送
|
|
// // 我方颜色id小于7是红色,大于7是蓝色,注意这里发送的是对方的颜色, 0:blue , 1:red
|
|
// chassis_feedback_data.enemy_color = referee_data->GameRobotState.robot_id > 7 ? 1 : 0;
|
|
// // 当前只做了17mm热量的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况
|
|
// chassis_feedback_data.bullet_speed = referee_data->GameRobotState.shooter_id1_17mm_speed_limit;
|
|
// chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0;
|
|
|
|
// 推送反馈消息
|
|
#ifdef ONE_BOARD
|
|
PubPushMessage(chassis_pub, (void *)&chassis_feedback_data);
|
|
#endif
|
|
#ifdef CHASSIS_BOARD
|
|
CANCommSend(chasiss_can_comm, (void *)&chassis_feedback_data);
|
|
#endif // CHASSIS_BOARD
|
|
} |