sentry_chassis_hzz/modules/imu/ins_task.c

306 lines
10 KiB
C

/**
******************************************************************************
* @file ins_task.c
* @author Wang Hongxi
* @author annotation and modificaiton by neozng
* @version V2.0.0
* @date 2022/2/23
* @brief
******************************************************************************
* @attention
*
******************************************************************************
*/
#include "ins_task.h"
#include "controller.h"
#include "QuaternionEKF.h"
#include "bsp_temperature.h"
#include "spi.h"
#include "user_lib.h"
static INS_t INS;
static IMU_Param_t IMU_Param;
static PIDInstance TempCtrl = {0};
const float xb[3] = {1, 0, 0};
const float yb[3] = {0, 1, 0};
const float zb[3] = {0, 0, 1};
// 用于获取两次采样之间的时间间隔
static uint32_t INS_DWT_Count = 0;
static float dt = 0, t = 0;
static float RefTemp = 40; // 恒温设定温度
static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3]);
/**
* @brief 温度控制
*
*/
static void IMU_Temperature_Ctrl(void)
{
PID_Calculate(&TempCtrl, BMI088.Temperature, RefTemp);
IMUPWMSet(float_constrain(float_rounding(TempCtrl.Output), 0, UINT32_MAX));
}
attitude_t *INS_Init(void)
{
while (BMI088Init(&hspi1, 1) != BMI088_NO_ERROR)
;
IMU_Param.scale[X] = 1;
IMU_Param.scale[Y] = 1;
IMU_Param.scale[Z] = 1;
IMU_Param.Yaw = 0;
IMU_Param.Pitch = 0;
IMU_Param.Roll = 0;
IMU_Param.flag = 1;
IMU_QuaternionEKF_Init(10, 0.001, 10000000, 1, 0);
// imu heat init
PID_Init_config_s config = {.MaxOut = 2000,
.IntegralLimit = 300,
.DeadBand = 0,
.Kp = 1000,
.Ki = 20,
.Kd = 0,
.Improve = 0x01}; // enable integratiaon limit
PID_Init(&TempCtrl, &config);
// noise of accel is relatively big and of high freq,thus lpf is used
INS.AccelLPF = 0.0085;
return (attitude_t*)&INS.Roll;
}
/* 注意以1kHz的频率运行此任务 */
void INS_Task(void)
{
static uint32_t count = 0;
const float gravity[3] = {0, 0, 9.81f};
dt = DWT_GetDeltaT(&INS_DWT_Count);
t += dt;
// ins update
if ((count % 1) == 0)
{
BMI088_Read(&BMI088);
INS.Accel[X] = BMI088.Accel[X];
INS.Accel[Y] = BMI088.Accel[Y];
INS.Accel[Z] = BMI088.Accel[Z];
INS.Gyro[X] = BMI088.Gyro[X];
INS.Gyro[Y] = BMI088.Gyro[Y];
INS.Gyro[Z] = BMI088.Gyro[Z];
// demo function,用于修正安装误差,可以不管,本demo暂时没用
IMU_Param_Correction(&IMU_Param, INS.Gyro, INS.Accel);
// 计算重力加速度矢量和b系的XY两轴的夹角,可用作功能扩展,本demo暂时没用
INS.atanxz = -atan2f(INS.Accel[X], INS.Accel[Z]) * 180 / PI;
INS.atanyz = atan2f(INS.Accel[Y], INS.Accel[Z]) * 180 / PI;
// 核心函数,EKF更新四元数
IMU_QuaternionEKF_Update(INS.Gyro[X], INS.Gyro[Y], INS.Gyro[Z], INS.Accel[X], INS.Accel[Y], INS.Accel[Z], dt);
memcpy(INS.q, QEKF_INS.q, sizeof(QEKF_INS.q));
// 机体系基向量转换到导航坐标系,本例选取惯性系为导航系
BodyFrameToEarthFrame(xb, INS.xn, INS.q);
BodyFrameToEarthFrame(yb, INS.yn, INS.q);
BodyFrameToEarthFrame(zb, INS.zn, INS.q);
// 将重力从导航坐标系n转换到机体系b,随后根据加速度计数据计算运动加速度
float gravity_b[3];
EarthFrameToBodyFrame(gravity, gravity_b, INS.q);
for (uint8_t i = 0; i < 3; i++) // 同样过一个低通滤波
{
INS.MotionAccel_b[i] = (INS.Accel[i] - gravity_b[i]) * dt / (INS.AccelLPF + dt) + INS.MotionAccel_b[i] * INS.AccelLPF / (INS.AccelLPF + dt);
}
BodyFrameToEarthFrame(INS.MotionAccel_b, INS.MotionAccel_n, INS.q); // 转换回导航系n
// 获取最终数据
INS.Yaw = QEKF_INS.Yaw;
INS.Pitch = QEKF_INS.Pitch;
INS.Roll = QEKF_INS.Roll;
INS.YawTotalAngle = QEKF_INS.YawTotalAngle;
}
// temperature control
if ((count % 2) == 0)
{
// 500hz
IMU_Temperature_Ctrl();
}
if ((count++ % 1000) == 0)
{
// 1Hz 可以加入monitor函数,检查IMU是否正常运行/离线
}
}
/**
* @brief Transform 3dvector from BodyFrame to EarthFrame
* @param[1] vector in BodyFrame
* @param[2] vector in EarthFrame
* @param[3] quaternion
*/
void BodyFrameToEarthFrame(const float *vecBF, float *vecEF, float *q)
{
vecEF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecBF[0] +
(q[1] * q[2] - q[0] * q[3]) * vecBF[1] +
(q[1] * q[3] + q[0] * q[2]) * vecBF[2]);
vecEF[1] = 2.0f * ((q[1] * q[2] + q[0] * q[3]) * vecBF[0] +
(0.5f - q[1] * q[1] - q[3] * q[3]) * vecBF[1] +
(q[2] * q[3] - q[0] * q[1]) * vecBF[2]);
vecEF[2] = 2.0f * ((q[1] * q[3] - q[0] * q[2]) * vecBF[0] +
(q[2] * q[3] + q[0] * q[1]) * vecBF[1] +
(0.5f - q[1] * q[1] - q[2] * q[2]) * vecBF[2]);
}
/**
* @brief Transform 3dvector from EarthFrame to BodyFrame
* @param[1] vector in EarthFrame
* @param[2] vector in BodyFrame
* @param[3] quaternion
*/
void EarthFrameToBodyFrame(const float *vecEF, float *vecBF, float *q)
{
vecBF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecEF[0] +
(q[1] * q[2] + q[0] * q[3]) * vecEF[1] +
(q[1] * q[3] - q[0] * q[2]) * vecEF[2]);
vecBF[1] = 2.0f * ((q[1] * q[2] - q[0] * q[3]) * vecEF[0] +
(0.5f - q[1] * q[1] - q[3] * q[3]) * vecEF[1] +
(q[2] * q[3] + q[0] * q[1]) * vecEF[2]);
vecBF[2] = 2.0f * ((q[1] * q[3] + q[0] * q[2]) * vecEF[0] +
(q[2] * q[3] - q[0] * q[1]) * vecEF[1] +
(0.5f - q[1] * q[1] - q[2] * q[2]) * vecEF[2]);
}
/**
* @brief reserved.用于修正IMU安装误差与标度因数误差,即陀螺仪轴和云台轴的安装偏移
*
*
* @param param IMU参数
* @param gyro 角速度
* @param accel 加速度
*/
static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3])
{
static float lastYawOffset, lastPitchOffset, lastRollOffset;
static float c_11, c_12, c_13, c_21, c_22, c_23, c_31, c_32, c_33;
float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll;
if (fabsf(param->Yaw - lastYawOffset) > 0.001f ||
fabsf(param->Pitch - lastPitchOffset) > 0.001f ||
fabsf(param->Roll - lastRollOffset) > 0.001f || param->flag)
{
cosYaw = arm_cos_f32(param->Yaw / 57.295779513f);
cosPitch = arm_cos_f32(param->Pitch / 57.295779513f);
cosRoll = arm_cos_f32(param->Roll / 57.295779513f);
sinYaw = arm_sin_f32(param->Yaw / 57.295779513f);
sinPitch = arm_sin_f32(param->Pitch / 57.295779513f);
sinRoll = arm_sin_f32(param->Roll / 57.295779513f);
// 1.yaw(alpha) 2.pitch(beta) 3.roll(gamma)
c_11 = cosYaw * cosRoll + sinYaw * sinPitch * sinRoll;
c_12 = cosPitch * sinYaw;
c_13 = cosYaw * sinRoll - cosRoll * sinYaw * sinPitch;
c_21 = cosYaw * sinPitch * sinRoll - cosRoll * sinYaw;
c_22 = cosYaw * cosPitch;
c_23 = -sinYaw * sinRoll - cosYaw * cosRoll * sinPitch;
c_31 = -cosPitch * sinRoll;
c_32 = sinPitch;
c_33 = cosPitch * cosRoll;
param->flag = 0;
}
float gyro_temp[3];
for (uint8_t i = 0; i < 3; i++)
gyro_temp[i] = gyro[i] * param->scale[i];
gyro[X] = c_11 * gyro_temp[X] +
c_12 * gyro_temp[Y] +
c_13 * gyro_temp[Z];
gyro[Y] = c_21 * gyro_temp[X] +
c_22 * gyro_temp[Y] +
c_23 * gyro_temp[Z];
gyro[Z] = c_31 * gyro_temp[X] +
c_32 * gyro_temp[Y] +
c_33 * gyro_temp[Z];
float accel_temp[3];
for (uint8_t i = 0; i < 3; i++)
accel_temp[i] = accel[i];
accel[X] = c_11 * accel_temp[X] +
c_12 * accel_temp[Y] +
c_13 * accel_temp[Z];
accel[Y] = c_21 * accel_temp[X] +
c_22 * accel_temp[Y] +
c_23 * accel_temp[Z];
accel[Z] = c_31 * accel_temp[X] +
c_32 * accel_temp[Y] +
c_33 * accel_temp[Z];
lastYawOffset = param->Yaw;
lastPitchOffset = param->Pitch;
lastRollOffset = param->Roll;
}
//------------------------------------functions below are not used in this demo-------------------------------------------------
//----------------------------------you can read them for learning or programming-----------------------------------------------
//----------------------------------they could also be helpful for further design-----------------------------------------------
/**
* @brief Update quaternion
*/
void QuaternionUpdate(float *q, float gx, float gy, float gz, float dt)
{
float qa, qb, qc;
gx *= 0.5f * dt;
gy *= 0.5f * dt;
gz *= 0.5f * dt;
qa = q[0];
qb = q[1];
qc = q[2];
q[0] += (-qb * gx - qc * gy - q[3] * gz);
q[1] += (qa * gx + qc * gz - q[3] * gy);
q[2] += (qa * gy - qb * gz + q[3] * gx);
q[3] += (qa * gz + qb * gy - qc * gx);
}
/**
* @brief Convert quaternion to eular angle
*/
void QuaternionToEularAngle(float *q, float *Yaw, float *Pitch, float *Roll)
{
*Yaw = atan2f(2.0f * (q[0] * q[3] + q[1] * q[2]), 2.0f * (q[0] * q[0] + q[1] * q[1]) - 1.0f) * 57.295779513f;
*Pitch = atan2f(2.0f * (q[0] * q[1] + q[2] * q[3]), 2.0f * (q[0] * q[0] + q[3] * q[3]) - 1.0f) * 57.295779513f;
*Roll = asinf(2.0f * (q[0] * q[2] - q[1] * q[3])) * 57.295779513f;
}
/**
* @brief Convert eular angle to quaternion
*/
void EularAngleToQuaternion(float Yaw, float Pitch, float Roll, float *q)
{
float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll;
Yaw /= 57.295779513f;
Pitch /= 57.295779513f;
Roll /= 57.295779513f;
cosPitch = arm_cos_f32(Pitch / 2);
cosYaw = arm_cos_f32(Yaw / 2);
cosRoll = arm_cos_f32(Roll / 2);
sinPitch = arm_sin_f32(Pitch / 2);
sinYaw = arm_sin_f32(Yaw / 2);
sinRoll = arm_sin_f32(Roll / 2);
q[0] = cosPitch * cosRoll * cosYaw + sinPitch * sinRoll * sinYaw;
q[1] = sinPitch * cosRoll * cosYaw - cosPitch * sinRoll * sinYaw;
q[2] = sinPitch * cosRoll * sinYaw + cosPitch * sinRoll * cosYaw;
q[3] = cosPitch * cosRoll * sinYaw - sinPitch * sinRoll * cosYaw;
}