/** ****************************************************************************** * @file ins_task.c * @author Wang Hongxi * @author annotation and modificaiton by neozng * @version V2.0.0 * @date 2022/2/23 * @brief ****************************************************************************** * @attention * ****************************************************************************** */ #include "ins_task.h" #include "controller.h" #include "QuaternionEKF.h" #include "bsp_temperature.h" #include "spi.h" #include "user_lib.h" #include "general_def.h" #include "master_process.h" static INS_t INS; static IMU_Param_t IMU_Param; static PIDInstance TempCtrl = {0}; const float xb[3] = {1, 0, 0}; const float yb[3] = {0, 1, 0}; const float zb[3] = {0, 0, 1}; // 用于获取两次采样之间的时间间隔 static uint32_t INS_DWT_Count = 0; static float dt = 0, t = 0; static float RefTemp = 40; // 恒温设定温度 static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3]); /** * @brief 温度控制 * */ static void IMU_Temperature_Ctrl(void) { PIDCalculate(&TempCtrl, BMI088.Temperature, RefTemp); IMUPWMSet(float_constrain(float_rounding(TempCtrl.Output), 0, UINT32_MAX)); } // 使用加速度计的数据初始化Roll和Pitch,而Yaw置0,这样可以避免在初始时候的姿态估计误差 static void InitQuaternion(float* init_q4) { float acc_init[3] = {0}; float gravity_norm[3] = {0, 0, 1}; // 导航系重力加速度矢量,归一化后为(0,0,1) float axis_rot[3] = {0}; // 旋转轴 // 读取100次加速度计数据,取平均值作为初始值 for (uint8_t i = 0; i < 100; ++i) { BMI088_Read(&BMI088); acc_init[X] += BMI088.Accel[X]; acc_init[Y] += BMI088.Accel[Y]; acc_init[Z] += BMI088.Accel[Z]; DWT_Delay(0.001); } for (uint8_t i = 0; i < 3; ++i) acc_init[i] /= 100; Norm3d(acc_init); // 计算原始加速度矢量和导航系重力加速度矢量的夹角 float angle = acosf(Dot3d(acc_init, gravity_norm)); Cross3d(acc_init, gravity_norm, axis_rot); Norm3d(axis_rot); init_q4[0] = cosf(angle / 2.0f); for(uint8_t i = 0; i < 2; ++i) init_q4[i + 1] = axis_rot[i] * sinf(angle / 2.0f); // 轴角公式,第三轴为0(没有z轴分量) } attitude_t *INS_Init(void) { while (BMI088Init(&hspi1, 1) != BMI088_NO_ERROR) ; IMU_Param.scale[X] = 1; IMU_Param.scale[Y] = 1; IMU_Param.scale[Z] = 1; IMU_Param.Yaw = 0; IMU_Param.Pitch = 0; IMU_Param.Roll = 0; IMU_Param.flag = 1; float init_quaternion[4] = {0}; InitQuaternion(init_quaternion); IMU_QuaternionEKF_Init(init_quaternion, 10, 0.001, 1000000, 1, 0); // imu heat init PID_Init_Config_s config = {.MaxOut = 2000, .IntegralLimit = 300, .DeadBand = 0, .Kp = 1000, .Ki = 20, .Kd = 0, .Improve = 0x01}; // enable integratiaon limit PIDInit(&TempCtrl, &config); // noise of accel is relatively big and of high freq,thus lpf is used INS.AccelLPF = 0.0085; DWT_GetDeltaT64(&INS_DWT_Count); return (attitude_t *)&INS.Gyro; // @todo: 这里偷懒了,不要这样做! 修改INT_t结构体可能会导致异常,待修复. } /* 注意以1kHz的频率运行此任务 */ void INS_Task(void) { static uint32_t count = 0; const float gravity[3] = {0, 0, 9.81f}; dt = DWT_GetDeltaT(&INS_DWT_Count); t += dt; // ins update if ((count % 1) == 0) { BMI088_Read(&BMI088); INS.Accel[X] = BMI088.Accel[X]; INS.Accel[Y] = BMI088.Accel[Y]; INS.Accel[Z] = BMI088.Accel[Z]; INS.Gyro[X] = BMI088.Gyro[X]; INS.Gyro[Y] = BMI088.Gyro[Y]; INS.Gyro[Z] = BMI088.Gyro[Z]; // demo function,用于修正安装误差,可以不管,本demo暂时没用 IMU_Param_Correction(&IMU_Param, INS.Gyro, INS.Accel); // 计算重力加速度矢量和b系的XY两轴的夹角,可用作功能扩展,本demo暂时没用 // INS.atanxz = -atan2f(INS.Accel[X], INS.Accel[Z]) * 180 / PI; // INS.atanyz = atan2f(INS.Accel[Y], INS.Accel[Z]) * 180 / PI; // 核心函数,EKF更新四元数 IMU_QuaternionEKF_Update(INS.Gyro[X], INS.Gyro[Y], INS.Gyro[Z], INS.Accel[X], INS.Accel[Y], INS.Accel[Z], dt); memcpy(INS.q, QEKF_INS.q, sizeof(QEKF_INS.q)); // 机体系基向量转换到导航坐标系,本例选取惯性系为导航系 BodyFrameToEarthFrame(xb, INS.xn, INS.q); BodyFrameToEarthFrame(yb, INS.yn, INS.q); BodyFrameToEarthFrame(zb, INS.zn, INS.q); // 将重力从导航坐标系n转换到机体系b,随后根据加速度计数据计算运动加速度 float gravity_b[3]; EarthFrameToBodyFrame(gravity, gravity_b, INS.q); for (uint8_t i = 0; i < 3; ++i) // 同样过一个低通滤波 { INS.MotionAccel_b[i] = (INS.Accel[i] - gravity_b[i]) * dt / (INS.AccelLPF + dt) + INS.MotionAccel_b[i] * INS.AccelLPF / (INS.AccelLPF + dt); } BodyFrameToEarthFrame(INS.MotionAccel_b, INS.MotionAccel_n, INS.q); // 转换回导航系n INS.Yaw = QEKF_INS.Yaw; INS.Pitch = QEKF_INS.Pitch; INS.Roll = QEKF_INS.Roll; INS.YawTotalAngle = QEKF_INS.YawTotalAngle; VisionSetAltitude(INS.Yaw,INS.Pitch); } // temperature control if ((count % 2) == 0) { // 500hz IMU_Temperature_Ctrl(); } if ((count++ % 1000) == 0) { // 1Hz 可以加入monitor函数,检查IMU是否正常运行/离线 } } /** * @brief Transform 3dvector from BodyFrame to EarthFrame * @param[1] vector in BodyFrame * @param[2] vector in EarthFrame * @param[3] quaternion */ void BodyFrameToEarthFrame(const float *vecBF, float *vecEF, float *q) { vecEF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecBF[0] + (q[1] * q[2] - q[0] * q[3]) * vecBF[1] + (q[1] * q[3] + q[0] * q[2]) * vecBF[2]); vecEF[1] = 2.0f * ((q[1] * q[2] + q[0] * q[3]) * vecBF[0] + (0.5f - q[1] * q[1] - q[3] * q[3]) * vecBF[1] + (q[2] * q[3] - q[0] * q[1]) * vecBF[2]); vecEF[2] = 2.0f * ((q[1] * q[3] - q[0] * q[2]) * vecBF[0] + (q[2] * q[3] + q[0] * q[1]) * vecBF[1] + (0.5f - q[1] * q[1] - q[2] * q[2]) * vecBF[2]); } /** * @brief Transform 3dvector from EarthFrame to BodyFrame * @param[1] vector in EarthFrame * @param[2] vector in BodyFrame * @param[3] quaternion */ void EarthFrameToBodyFrame(const float *vecEF, float *vecBF, float *q) { vecBF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecEF[0] + (q[1] * q[2] + q[0] * q[3]) * vecEF[1] + (q[1] * q[3] - q[0] * q[2]) * vecEF[2]); vecBF[1] = 2.0f * ((q[1] * q[2] - q[0] * q[3]) * vecEF[0] + (0.5f - q[1] * q[1] - q[3] * q[3]) * vecEF[1] + (q[2] * q[3] + q[0] * q[1]) * vecEF[2]); vecBF[2] = 2.0f * ((q[1] * q[3] + q[0] * q[2]) * vecEF[0] + (q[2] * q[3] - q[0] * q[1]) * vecEF[1] + (0.5f - q[1] * q[1] - q[2] * q[2]) * vecEF[2]); } /** * @brief reserved.用于修正IMU安装误差与标度因数误差,即陀螺仪轴和云台轴的安装偏移 * * * @param param IMU参数 * @param gyro 角速度 * @param accel 加速度 */ static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3]) { static float lastYawOffset, lastPitchOffset, lastRollOffset; static float c_11, c_12, c_13, c_21, c_22, c_23, c_31, c_32, c_33; float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll; if (fabsf(param->Yaw - lastYawOffset) > 0.001f || fabsf(param->Pitch - lastPitchOffset) > 0.001f || fabsf(param->Roll - lastRollOffset) > 0.001f || param->flag) { cosYaw = arm_cos_f32(param->Yaw / 57.295779513f); cosPitch = arm_cos_f32(param->Pitch / 57.295779513f); cosRoll = arm_cos_f32(param->Roll / 57.295779513f); sinYaw = arm_sin_f32(param->Yaw / 57.295779513f); sinPitch = arm_sin_f32(param->Pitch / 57.295779513f); sinRoll = arm_sin_f32(param->Roll / 57.295779513f); // 1.yaw(alpha) 2.pitch(beta) 3.roll(gamma) c_11 = cosYaw * cosRoll + sinYaw * sinPitch * sinRoll; c_12 = cosPitch * sinYaw; c_13 = cosYaw * sinRoll - cosRoll * sinYaw * sinPitch; c_21 = cosYaw * sinPitch * sinRoll - cosRoll * sinYaw; c_22 = cosYaw * cosPitch; c_23 = -sinYaw * sinRoll - cosYaw * cosRoll * sinPitch; c_31 = -cosPitch * sinRoll; c_32 = sinPitch; c_33 = cosPitch * cosRoll; param->flag = 0; } float gyro_temp[3]; for (uint8_t i = 0; i < 3; ++i) gyro_temp[i] = gyro[i] * param->scale[i]; gyro[X] = c_11 * gyro_temp[X] + c_12 * gyro_temp[Y] + c_13 * gyro_temp[Z]; gyro[Y] = c_21 * gyro_temp[X] + c_22 * gyro_temp[Y] + c_23 * gyro_temp[Z]; gyro[Z] = c_31 * gyro_temp[X] + c_32 * gyro_temp[Y] + c_33 * gyro_temp[Z]; float accel_temp[3]; for (uint8_t i = 0; i < 3; ++i) accel_temp[i] = accel[i]; accel[X] = c_11 * accel_temp[X] + c_12 * accel_temp[Y] + c_13 * accel_temp[Z]; accel[Y] = c_21 * accel_temp[X] + c_22 * accel_temp[Y] + c_23 * accel_temp[Z]; accel[Z] = c_31 * accel_temp[X] + c_32 * accel_temp[Y] + c_33 * accel_temp[Z]; lastYawOffset = param->Yaw; lastPitchOffset = param->Pitch; lastRollOffset = param->Roll; } //------------------------------------functions below are not used in this demo------------------------------------------------- //----------------------------------you can read them for learning or programming----------------------------------------------- //----------------------------------they could also be helpful for further design----------------------------------------------- /** * @brief Update quaternion */ void QuaternionUpdate(float *q, float gx, float gy, float gz, float dt) { float qa, qb, qc; gx *= 0.5f * dt; gy *= 0.5f * dt; gz *= 0.5f * dt; qa = q[0]; qb = q[1]; qc = q[2]; q[0] += (-qb * gx - qc * gy - q[3] * gz); q[1] += (qa * gx + qc * gz - q[3] * gy); q[2] += (qa * gy - qb * gz + q[3] * gx); q[3] += (qa * gz + qb * gy - qc * gx); } /** * @brief Convert quaternion to eular angle */ void QuaternionToEularAngle(float *q, float *Yaw, float *Pitch, float *Roll) { *Yaw = atan2f(2.0f * (q[0] * q[3] + q[1] * q[2]), 2.0f * (q[0] * q[0] + q[1] * q[1]) - 1.0f) * 57.295779513f; *Pitch = atan2f(2.0f * (q[0] * q[1] + q[2] * q[3]), 2.0f * (q[0] * q[0] + q[3] * q[3]) - 1.0f) * 57.295779513f; *Roll = asinf(2.0f * (q[0] * q[2] - q[1] * q[3])) * 57.295779513f; } /** * @brief Convert eular angle to quaternion */ void EularAngleToQuaternion(float Yaw, float Pitch, float Roll, float *q) { float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll; Yaw /= 57.295779513f; Pitch /= 57.295779513f; Roll /= 57.295779513f; cosPitch = arm_cos_f32(Pitch / 2); cosYaw = arm_cos_f32(Yaw / 2); cosRoll = arm_cos_f32(Roll / 2); sinPitch = arm_sin_f32(Pitch / 2); sinYaw = arm_sin_f32(Yaw / 2); sinRoll = arm_sin_f32(Roll / 2); q[0] = cosPitch * cosRoll * cosYaw + sinPitch * sinRoll * sinYaw; q[1] = sinPitch * cosRoll * cosYaw - cosPitch * sinRoll * sinYaw; q[2] = sinPitch * cosRoll * sinYaw + cosPitch * sinRoll * cosYaw; q[3] = cosPitch * cosRoll * sinYaw - sinPitch * sinRoll * cosYaw; }