init commit
This commit is contained in:
commit
78f85b7fda
|
@ -0,0 +1,51 @@
|
|||
# Prerequisites
|
||||
*.d
|
||||
|
||||
# Object files
|
||||
*.o
|
||||
*.ko
|
||||
*.obj
|
||||
*.elf
|
||||
|
||||
# Linker output
|
||||
*.ilk
|
||||
*.map
|
||||
*.exp
|
||||
|
||||
# Precompiled Headers
|
||||
*.gch
|
||||
*.pch
|
||||
|
||||
# Libraries
|
||||
*.la
|
||||
*.lo
|
||||
|
||||
# Shared objects (inc. Windows DLLs)
|
||||
*.dll
|
||||
*.so
|
||||
*.so.*
|
||||
*.dylib
|
||||
|
||||
# Executables
|
||||
*.exe
|
||||
*.out
|
||||
*.app
|
||||
*.i*86
|
||||
*.x86_64
|
||||
|
||||
# Debug files
|
||||
*.dSYM/
|
||||
*.su
|
||||
*.idb
|
||||
*.pdb
|
||||
|
||||
# Kernel Module Compile Results
|
||||
*.mod*
|
||||
*.cmd
|
||||
.tmp_versions/
|
||||
modules.order
|
||||
Module.symvers
|
||||
Mkfile.old
|
||||
dkms.conf
|
||||
build
|
||||
./idea
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1 @@
|
|||
[]
|
|
@ -0,0 +1 @@
|
|||
[]
|
|
@ -0,0 +1,22 @@
|
|||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Cortex Debug",
|
||||
"cwd": "${workspaceRoot}",
|
||||
"executable": "${workspaceRoot}\\build\\abstract_test.elf",
|
||||
"request": "launch",
|
||||
"type": "cortex-debug",
|
||||
"device":"STM32F407IG", //使用J-link GDB Server时必须;其他GBD Server时可选(有可能帮助自动选择SVD文件)。支持的设备见 https://www.segger.com/downloads/supported-devices.php
|
||||
"svdFile": ".\\STM32F407.svd", //svd文件,有这个文件才能查看寄存器的值,每个单片机都不同。可以在以下地址找到 https://github.com/posborne/cmsis-svd
|
||||
"servertype": "openocd", //使用的GDB Server
|
||||
"configFiles":[
|
||||
".\\openocd.cfg",
|
||||
],
|
||||
// path to your gcc-arm-none-eabi/bin
|
||||
"armToolchainPath": "D:\\gcc-arm-none-eabi\\bin",
|
||||
// path to your gcc-arm-none-eabi/arm-none-eabi-gdb.exe
|
||||
"gdbPath": "D:\\gcc-arm-none-eabi\\bin\\arm-none-eabi-gdb.exe"
|
||||
}
|
||||
]
|
||||
}
|
|
@ -0,0 +1,31 @@
|
|||
{
|
||||
"C_Cpp.default.configurationProvider": "ms-vscode.makefile-tools",
|
||||
"files.associations": {
|
||||
"arm_math.h": "c",
|
||||
"task.h": "c",
|
||||
"main.h": "c",
|
||||
"cmsis_os.h": "c",
|
||||
"freertos.h": "c",
|
||||
"bmi088driver.h": "c",
|
||||
"user_lib.h": "c",
|
||||
"mpu_armv7.h": "c",
|
||||
"stm32f4xx_hal.h": "c",
|
||||
"stm32f4xx_hal_conf.h": "c",
|
||||
"stm32_hal_legacy.h": "c",
|
||||
"stm32f4xx.h": "c",
|
||||
"cstdint": "c",
|
||||
"tim.h": "c",
|
||||
"struct_typedef.h": "c",
|
||||
"bsp_can.h": "c",
|
||||
"stdint.h": "c",
|
||||
"bsp_temperature.h": "c",
|
||||
"bsp_rc.h": "c",
|
||||
"remote_control.h": "c",
|
||||
"bsp_usart.h": "c",
|
||||
"led_task.h": "c",
|
||||
"can_receive.h": "c",
|
||||
"can_process.h": "c",
|
||||
"can.h": "c",
|
||||
"stdlib.h": "c"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,121 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_common_tables.h
|
||||
* Description: Extern declaration for common tables
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_COMMON_TABLES_H
|
||||
#define _ARM_COMMON_TABLES_H
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
extern const uint16_t armBitRevTable[1024];
|
||||
extern const q15_t armRecipTableQ15[64];
|
||||
extern const q31_t armRecipTableQ31[64];
|
||||
extern const float32_t twiddleCoef_16[32];
|
||||
extern const float32_t twiddleCoef_32[64];
|
||||
extern const float32_t twiddleCoef_64[128];
|
||||
extern const float32_t twiddleCoef_128[256];
|
||||
extern const float32_t twiddleCoef_256[512];
|
||||
extern const float32_t twiddleCoef_512[1024];
|
||||
extern const float32_t twiddleCoef_1024[2048];
|
||||
extern const float32_t twiddleCoef_2048[4096];
|
||||
extern const float32_t twiddleCoef_4096[8192];
|
||||
#define twiddleCoef twiddleCoef_4096
|
||||
extern const q31_t twiddleCoef_16_q31[24];
|
||||
extern const q31_t twiddleCoef_32_q31[48];
|
||||
extern const q31_t twiddleCoef_64_q31[96];
|
||||
extern const q31_t twiddleCoef_128_q31[192];
|
||||
extern const q31_t twiddleCoef_256_q31[384];
|
||||
extern const q31_t twiddleCoef_512_q31[768];
|
||||
extern const q31_t twiddleCoef_1024_q31[1536];
|
||||
extern const q31_t twiddleCoef_2048_q31[3072];
|
||||
extern const q31_t twiddleCoef_4096_q31[6144];
|
||||
extern const q15_t twiddleCoef_16_q15[24];
|
||||
extern const q15_t twiddleCoef_32_q15[48];
|
||||
extern const q15_t twiddleCoef_64_q15[96];
|
||||
extern const q15_t twiddleCoef_128_q15[192];
|
||||
extern const q15_t twiddleCoef_256_q15[384];
|
||||
extern const q15_t twiddleCoef_512_q15[768];
|
||||
extern const q15_t twiddleCoef_1024_q15[1536];
|
||||
extern const q15_t twiddleCoef_2048_q15[3072];
|
||||
extern const q15_t twiddleCoef_4096_q15[6144];
|
||||
extern const float32_t twiddleCoef_rfft_32[32];
|
||||
extern const float32_t twiddleCoef_rfft_64[64];
|
||||
extern const float32_t twiddleCoef_rfft_128[128];
|
||||
extern const float32_t twiddleCoef_rfft_256[256];
|
||||
extern const float32_t twiddleCoef_rfft_512[512];
|
||||
extern const float32_t twiddleCoef_rfft_1024[1024];
|
||||
extern const float32_t twiddleCoef_rfft_2048[2048];
|
||||
extern const float32_t twiddleCoef_rfft_4096[4096];
|
||||
|
||||
/* floating-point bit reversal tables */
|
||||
#define ARMBITREVINDEXTABLE_16_TABLE_LENGTH ((uint16_t)20)
|
||||
#define ARMBITREVINDEXTABLE_32_TABLE_LENGTH ((uint16_t)48)
|
||||
#define ARMBITREVINDEXTABLE_64_TABLE_LENGTH ((uint16_t)56)
|
||||
#define ARMBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208)
|
||||
#define ARMBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440)
|
||||
#define ARMBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448)
|
||||
#define ARMBITREVINDEXTABLE_1024_TABLE_LENGTH ((uint16_t)1800)
|
||||
#define ARMBITREVINDEXTABLE_2048_TABLE_LENGTH ((uint16_t)3808)
|
||||
#define ARMBITREVINDEXTABLE_4096_TABLE_LENGTH ((uint16_t)4032)
|
||||
|
||||
extern const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE_16_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE_32_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE_64_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE_1024_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable2048[ARMBITREVINDEXTABLE_2048_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable4096[ARMBITREVINDEXTABLE_4096_TABLE_LENGTH];
|
||||
|
||||
/* fixed-point bit reversal tables */
|
||||
#define ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH ((uint16_t)12)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH ((uint16_t)24)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH ((uint16_t)56)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH ((uint16_t)112)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH ((uint16_t)240)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH ((uint16_t)480)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984)
|
||||
#define ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032)
|
||||
|
||||
extern const uint16_t armBitRevIndexTable_fixed_16[ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH];
|
||||
extern const uint16_t armBitRevIndexTable_fixed_4096[ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH];
|
||||
|
||||
/* Tables for Fast Math Sine and Cosine */
|
||||
extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1];
|
||||
extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1];
|
||||
extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1];
|
||||
|
||||
#endif /* ARM_COMMON_TABLES_H */
|
|
@ -0,0 +1,66 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_const_structs.h
|
||||
* Description: Constant structs that are initialized for user convenience.
|
||||
* For example, some can be given as arguments to the arm_cfft_f32() function.
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_CONST_STRUCTS_H
|
||||
#define _ARM_CONST_STRUCTS_H
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len16;
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len32;
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len64;
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len128;
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len256;
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len512;
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len1024;
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len2048;
|
||||
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len4096;
|
||||
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len16;
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len32;
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len64;
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len128;
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len256;
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len512;
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len1024;
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len2048;
|
||||
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len4096;
|
||||
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len16;
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len32;
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len64;
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len128;
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len256;
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len512;
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len1024;
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len2048;
|
||||
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len4096;
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,153 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_abs_f32.c
|
||||
* Description: Floating-point vector absolute value
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include <math.h>
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BasicAbs Vector Absolute Value
|
||||
*
|
||||
* Computes the absolute value of a vector on an element-by-element basis.
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = abs(pSrc[n]), 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* The functions support in-place computation allowing the source and
|
||||
* destination pointers to reference the same memory buffer.
|
||||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicAbs
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point vector absolute value.
|
||||
* @param[in] *pSrc points to the input buffer
|
||||
* @param[out] *pDst points to the output buffer
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_abs_f32(
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t in1, in2, in3, in4; /* temporary variables */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Calculate absolute and then store the results in the destination buffer. */
|
||||
/* read sample from source */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
in3 = *(pSrc + 2);
|
||||
|
||||
/* find absolute value */
|
||||
in1 = fabsf(in1);
|
||||
|
||||
/* read sample from source */
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
/* find absolute value */
|
||||
in2 = fabsf(in2);
|
||||
|
||||
/* read sample from source */
|
||||
*pDst = in1;
|
||||
|
||||
/* find absolute value */
|
||||
in3 = fabsf(in3);
|
||||
|
||||
/* find absolute value */
|
||||
in4 = fabsf(in4);
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 1) = in2;
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 2) = in3;
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 3) = in4;
|
||||
|
||||
|
||||
/* Update source pointer to process next sampels */
|
||||
pSrc += 4U;
|
||||
|
||||
/* Update destination pointer to process next sampels */
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Calculate absolute and then store the results in the destination buffer. */
|
||||
*pDst++ = fabsf(*pSrc++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicAbs group
|
||||
*/
|
|
@ -0,0 +1,167 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_abs_q15.c
|
||||
* Description: Q15 vector absolute value
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicAbs
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 vector absolute value.
|
||||
* @param[in] *pSrc points to the input buffer
|
||||
* @param[out] *pDst points to the output buffer
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
|
||||
*/
|
||||
|
||||
void arm_abs_q15(
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
__SIMD32_TYPE *simd;
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q15_t in1; /* Input value1 */
|
||||
q15_t in2; /* Input value2 */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
simd = __SIMD32_CONST(pDst);
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Read two inputs */
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
|
||||
|
||||
/* Store the Absolute result in the destination buffer by packing the two values, in a single cycle */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
*simd++ =
|
||||
__PKHBT(((in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1)),
|
||||
((in2 > 0) ? in2 : (q15_t)__QSUB16(0, in2)), 16);
|
||||
|
||||
#else
|
||||
|
||||
|
||||
*simd++ =
|
||||
__PKHBT(((in2 > 0) ? in2 : (q15_t)__QSUB16(0, in2)),
|
||||
((in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1)), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*simd++ =
|
||||
__PKHBT(((in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1)),
|
||||
((in2 > 0) ? in2 : (q15_t)__QSUB16(0, in2)), 16);
|
||||
|
||||
#else
|
||||
|
||||
|
||||
*simd++ =
|
||||
__PKHBT(((in2 > 0) ? in2 : (q15_t)__QSUB16(0, in2)),
|
||||
((in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1)), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
pDst = (q15_t *)simd;
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Read the input */
|
||||
in1 = *pSrc++;
|
||||
|
||||
/* Calculate absolute value of input and then store the result in the destination buffer. */
|
||||
*pDst++ = (in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
q15_t in; /* Temporary input variable */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Read the input */
|
||||
in = *pSrc++;
|
||||
|
||||
/* Calculate absolute value of input and then store the result in the destination buffer. */
|
||||
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicAbs group
|
||||
*/
|
|
@ -0,0 +1,118 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_abs_q31.c
|
||||
* Description: Q31 vector absolute value
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicAbs
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 vector absolute value.
|
||||
* @param[in] *pSrc points to the input buffer
|
||||
* @param[out] *pDst points to the output buffer
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
|
||||
*/
|
||||
|
||||
void arm_abs_q31(
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q31_t in; /* Input value */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t in1, in2, in3, in4;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
in3 = *pSrc++;
|
||||
in4 = *pSrc++;
|
||||
|
||||
*pDst++ = (in1 > 0) ? in1 : (q31_t)__QSUB(0, in1);
|
||||
*pDst++ = (in2 > 0) ? in2 : (q31_t)__QSUB(0, in2);
|
||||
*pDst++ = (in3 > 0) ? in3 : (q31_t)__QSUB(0, in3);
|
||||
*pDst++ = (in4 > 0) ? in4 : (q31_t)__QSUB(0, in4);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Calculate absolute value of the input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */
|
||||
in = *pSrc++;
|
||||
*pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicAbs group
|
||||
*/
|
|
@ -0,0 +1,145 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_abs_q7.c
|
||||
* Description: Q7 vector absolute value
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicAbs
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector absolute value.
|
||||
* @param[in] *pSrc points to the input buffer
|
||||
* @param[out] *pDst points to the output buffer
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* \par Conditions for optimum performance
|
||||
* Input and output buffers should be aligned by 32-bit
|
||||
*
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F.
|
||||
*/
|
||||
|
||||
void arm_abs_q7(
|
||||
q7_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q7_t in; /* Input value1 */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t in1, in2, in3, in4; /* temporary input variables */
|
||||
q31_t out1, out2, out3, out4; /* temporary output variables */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Read inputs */
|
||||
in1 = (q31_t) * pSrc;
|
||||
in2 = (q31_t) * (pSrc + 1);
|
||||
in3 = (q31_t) * (pSrc + 2);
|
||||
|
||||
/* find absolute value */
|
||||
out1 = (in1 > 0) ? in1 : (q31_t)__QSUB8(0, in1);
|
||||
|
||||
/* read input */
|
||||
in4 = (q31_t) * (pSrc + 3);
|
||||
|
||||
/* find absolute value */
|
||||
out2 = (in2 > 0) ? in2 : (q31_t)__QSUB8(0, in2);
|
||||
|
||||
/* store result to destination */
|
||||
*pDst = (q7_t) out1;
|
||||
|
||||
/* find absolute value */
|
||||
out3 = (in3 > 0) ? in3 : (q31_t)__QSUB8(0, in3);
|
||||
|
||||
/* find absolute value */
|
||||
out4 = (in4 > 0) ? in4 : (q31_t)__QSUB8(0, in4);
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 1) = (q7_t) out2;
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 2) = (q7_t) out3;
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 3) = (q7_t) out4;
|
||||
|
||||
/* update pointers to process next samples */
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #define ARM_MATH_CM0_FAMILY */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = |A| */
|
||||
/* Read the input */
|
||||
in = *pSrc++;
|
||||
|
||||
/* Store the Absolute result in the destination buffer */
|
||||
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? 0x7f : -in);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicAbs group
|
||||
*/
|
|
@ -0,0 +1,138 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_add_f32.c
|
||||
* Description: Floating-point vector addition
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BasicAdd Vector Addition
|
||||
*
|
||||
* Element-by-element addition of two vectors.
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = pSrcA[n] + pSrcB[n], 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicAdd
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point vector addition.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_add_f32(
|
||||
float32_t * pSrcA,
|
||||
float32_t * pSrcB,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t inA1, inA2, inA3, inA4; /* temporary input variabels */
|
||||
float32_t inB1, inB2, inB3, inB4; /* temporary input variables */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
|
||||
/* read four inputs from sourceA and four inputs from sourceB */
|
||||
inA1 = *pSrcA;
|
||||
inB1 = *pSrcB;
|
||||
inA2 = *(pSrcA + 1);
|
||||
inB2 = *(pSrcB + 1);
|
||||
inA3 = *(pSrcA + 2);
|
||||
inB3 = *(pSrcB + 2);
|
||||
inA4 = *(pSrcA + 3);
|
||||
inB4 = *(pSrcB + 3);
|
||||
|
||||
/* C = A + B */
|
||||
/* add and store result to destination */
|
||||
*pDst = inA1 + inB1;
|
||||
*(pDst + 1) = inA2 + inB2;
|
||||
*(pDst + 2) = inA3 + inB3;
|
||||
*(pDst + 3) = inA4 + inB4;
|
||||
|
||||
/* update pointers to process next samples */
|
||||
pSrcA += 4U;
|
||||
pSrcB += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
*pDst++ = (*pSrcA++) + (*pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicAdd group
|
||||
*/
|
|
@ -0,0 +1,128 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_add_q15.c
|
||||
* Description: Q15 vector addition
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicAdd
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 vector addition.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_add_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inA1, inA2, inB1, inB2;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
inA1 = *__SIMD32(pSrcA)++;
|
||||
inA2 = *__SIMD32(pSrcA)++;
|
||||
inB1 = *__SIMD32(pSrcB)++;
|
||||
inB2 = *__SIMD32(pSrcB)++;
|
||||
|
||||
*__SIMD32(pDst)++ = __QADD16(inA1, inB1);
|
||||
*__SIMD32(pDst)++ = __QADD16(inA2, inB2);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
*pDst++ = (q15_t) __QADD16(*pSrcA++, *pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ + *pSrcB++), 16);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicAdd group
|
||||
*/
|
|
@ -0,0 +1,136 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_add_q31.c
|
||||
* Description: Q31 vector addition
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicAdd
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 vector addition.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_add_q31(
|
||||
q31_t * pSrcA,
|
||||
q31_t * pSrcB,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inA1, inA2, inA3, inA4;
|
||||
q31_t inB1, inB2, inB3, inB4;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
inA1 = *pSrcA++;
|
||||
inA2 = *pSrcA++;
|
||||
inB1 = *pSrcB++;
|
||||
inB2 = *pSrcB++;
|
||||
|
||||
inA3 = *pSrcA++;
|
||||
inA4 = *pSrcA++;
|
||||
inB3 = *pSrcB++;
|
||||
inB4 = *pSrcB++;
|
||||
|
||||
*pDst++ = __QADD(inA1, inB1);
|
||||
*pDst++ = __QADD(inA2, inB2);
|
||||
*pDst++ = __QADD(inA3, inB3);
|
||||
*pDst++ = __QADD(inA4, inB4);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
*pDst++ = __QADD(*pSrcA++, *pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ + *pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicAdd group
|
||||
*/
|
|
@ -0,0 +1,122 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_add_q7.c
|
||||
* Description: Q7 vector addition
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicAdd
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector addition.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_add_q7(
|
||||
q7_t * pSrcA,
|
||||
q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
*pDst++ = (q7_t) __SSAT(*pSrcA++ + *pSrcB++, 8);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + B */
|
||||
/* Add and then store the results in the destination buffer. */
|
||||
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ + *pSrcB++, 8);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicAdd group
|
||||
*/
|
|
@ -0,0 +1,123 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_dot_prod_f32.c
|
||||
* Description: Floating-point dot product
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup dot_prod Vector Dot Product
|
||||
*
|
||||
* Computes the dot product of two vectors.
|
||||
* The vectors are multiplied element-by-element and then summed.
|
||||
*
|
||||
* <pre>
|
||||
* sum = pSrcA[0]*pSrcB[0] + pSrcA[1]*pSrcB[1] + ... + pSrcA[blockSize-1]*pSrcB[blockSize-1]
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup dot_prod
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Dot product of floating-point vectors.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[out] *result output result returned here
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
|
||||
void arm_dot_prod_f32(
|
||||
float32_t * pSrcA,
|
||||
float32_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
float32_t * result)
|
||||
{
|
||||
float32_t sum = 0.0f; /* Temporary result storage */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Calculate dot product and then store the result in a temporary buffer */
|
||||
sum += (*pSrcA++) * (*pSrcB++);
|
||||
sum += (*pSrcA++) * (*pSrcB++);
|
||||
sum += (*pSrcA++) * (*pSrcB++);
|
||||
sum += (*pSrcA++) * (*pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Calculate dot product and then store the result in a temporary buffer. */
|
||||
sum += (*pSrcA++) * (*pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
/* Store the result back in the destination buffer */
|
||||
*result = sum;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of dot_prod group
|
||||
*/
|
|
@ -0,0 +1,128 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_dot_prod_q15.c
|
||||
* Description: Q15 dot product
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup dot_prod
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Dot product of Q15 vectors.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[out] *result output result returned here
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The intermediate multiplications are in 1.15 x 1.15 = 2.30 format and these
|
||||
* results are added to a 64-bit accumulator in 34.30 format.
|
||||
* Nonsaturating additions are used and given that there are 33 guard bits in the accumulator
|
||||
* there is no risk of overflow.
|
||||
* The return result is in 34.30 format.
|
||||
*/
|
||||
|
||||
void arm_dot_prod_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
q63_t * result)
|
||||
{
|
||||
q63_t sum = 0; /* Temporary result storage */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Calculate dot product and then store the result in a temporary buffer. */
|
||||
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum);
|
||||
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Calculate dot product and then store the results in a temporary buffer. */
|
||||
sum = __SMLALD(*pSrcA++, *pSrcB++, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Calculate dot product and then store the results in a temporary buffer. */
|
||||
sum += (q63_t) ((q31_t) * pSrcA++ * *pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
/* Store the result in the destination buffer in 34.30 format */
|
||||
*result = sum;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of dot_prod group
|
||||
*/
|
|
@ -0,0 +1,131 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_dot_prod_q31.c
|
||||
* Description: Q31 dot product
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup dot_prod
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Dot product of Q31 vectors.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[out] *result output result returned here
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these
|
||||
* are truncated to 2.48 format by discarding the lower 14 bits.
|
||||
* The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format.
|
||||
* There are 15 guard bits in the accumulator and there is no risk of overflow as long as
|
||||
* the length of the vectors is less than 2^16 elements.
|
||||
* The return result is in 16.48 format.
|
||||
*/
|
||||
|
||||
void arm_dot_prod_q31(
|
||||
q31_t * pSrcA,
|
||||
q31_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
q63_t * result)
|
||||
{
|
||||
q63_t sum = 0; /* Temporary result storage */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inA1, inA2, inA3, inA4;
|
||||
q31_t inB1, inB2, inB3, inB4;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Calculate dot product and then store the result in a temporary buffer. */
|
||||
inA1 = *pSrcA++;
|
||||
inA2 = *pSrcA++;
|
||||
inA3 = *pSrcA++;
|
||||
inA4 = *pSrcA++;
|
||||
inB1 = *pSrcB++;
|
||||
inB2 = *pSrcB++;
|
||||
inB3 = *pSrcB++;
|
||||
inB4 = *pSrcB++;
|
||||
|
||||
sum += ((q63_t) inA1 * inB1) >> 14U;
|
||||
sum += ((q63_t) inA2 * inB2) >> 14U;
|
||||
sum += ((q63_t) inA3 * inB3) >> 14U;
|
||||
sum += ((q63_t) inA4 * inB4) >> 14U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Calculate dot product and then store the result in a temporary buffer. */
|
||||
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Store the result in the destination buffer in 16.48 format */
|
||||
*result = sum;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of dot_prod group
|
||||
*/
|
|
@ -0,0 +1,147 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_dot_prod_q7.c
|
||||
* Description: Q7 dot product
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup dot_prod
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Dot product of Q7 vectors.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @param[out] *result output result returned here
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The intermediate multiplications are in 1.7 x 1.7 = 2.14 format and these
|
||||
* results are added to an accumulator in 18.14 format.
|
||||
* Nonsaturating additions are used and there is no danger of wrap around as long as
|
||||
* the vectors are less than 2^18 elements long.
|
||||
* The return result is in 18.14 format.
|
||||
*/
|
||||
|
||||
void arm_dot_prod_q7(
|
||||
q7_t * pSrcA,
|
||||
q7_t * pSrcB,
|
||||
uint32_t blockSize,
|
||||
q31_t * result)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
q31_t sum = 0; /* Temporary variables to store output */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q31_t input1, input2; /* Temporary variables to store input */
|
||||
q31_t inA1, inA2, inB1, inB2; /* Temporary variables to store input */
|
||||
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* read 4 samples at a time from sourceA */
|
||||
input1 = *__SIMD32(pSrcA)++;
|
||||
/* read 4 samples at a time from sourceB */
|
||||
input2 = *__SIMD32(pSrcB)++;
|
||||
|
||||
/* extract two q7_t samples to q15_t samples */
|
||||
inA1 = __SXTB16(__ROR(input1, 8));
|
||||
/* extract reminaing two samples */
|
||||
inA2 = __SXTB16(input1);
|
||||
/* extract two q7_t samples to q15_t samples */
|
||||
inB1 = __SXTB16(__ROR(input2, 8));
|
||||
/* extract reminaing two samples */
|
||||
inB2 = __SXTB16(input2);
|
||||
|
||||
/* multiply and accumulate two samples at a time */
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Dot product and then store the results in a temporary buffer. */
|
||||
sum = __SMLAD(*pSrcA++, *pSrcB++, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
|
||||
/* Dot product and then store the results in a temporary buffer. */
|
||||
sum += (q31_t) ((q15_t) * pSrcA++ * *pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
/* Store the result in the destination buffer in 18.14 format */
|
||||
*result = sum;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of dot_prod group
|
||||
*/
|
|
@ -0,0 +1,162 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_mult_f32.c
|
||||
* Description: Floating-point vector multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BasicMult Vector Multiplication
|
||||
*
|
||||
* Element-by-element multiplication of two vectors.
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = pSrcA[n] * pSrcB[n], 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point vector multiplication.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_mult_f32(
|
||||
float32_t * pSrcA,
|
||||
float32_t * pSrcB,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t inA1, inA2, inA3, inA4; /* temporary input variables */
|
||||
float32_t inB1, inB2, inB3, inB4; /* temporary input variables */
|
||||
float32_t out1, out2, out3, out4; /* temporary output variables */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the results in output buffer */
|
||||
/* read sample from sourceA */
|
||||
inA1 = *pSrcA;
|
||||
/* read sample from sourceB */
|
||||
inB1 = *pSrcB;
|
||||
/* read sample from sourceA */
|
||||
inA2 = *(pSrcA + 1);
|
||||
/* read sample from sourceB */
|
||||
inB2 = *(pSrcB + 1);
|
||||
|
||||
/* out = sourceA * sourceB */
|
||||
out1 = inA1 * inB1;
|
||||
|
||||
/* read sample from sourceA */
|
||||
inA3 = *(pSrcA + 2);
|
||||
/* read sample from sourceB */
|
||||
inB3 = *(pSrcB + 2);
|
||||
|
||||
/* out = sourceA * sourceB */
|
||||
out2 = inA2 * inB2;
|
||||
|
||||
/* read sample from sourceA */
|
||||
inA4 = *(pSrcA + 3);
|
||||
|
||||
/* store result to destination buffer */
|
||||
*pDst = out1;
|
||||
|
||||
/* read sample from sourceB */
|
||||
inB4 = *(pSrcB + 3);
|
||||
|
||||
/* out = sourceA * sourceB */
|
||||
out3 = inA3 * inB3;
|
||||
|
||||
/* store result to destination buffer */
|
||||
*(pDst + 1) = out2;
|
||||
|
||||
/* out = sourceA * sourceB */
|
||||
out4 = inA4 * inB4;
|
||||
/* store result to destination buffer */
|
||||
*(pDst + 2) = out3;
|
||||
/* store result to destination buffer */
|
||||
*(pDst + 3) = out4;
|
||||
|
||||
|
||||
/* update pointers to process next samples */
|
||||
pSrcA += 4U;
|
||||
pSrcB += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the results in output buffer */
|
||||
*pDst++ = (*pSrcA++) * (*pSrcB++);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMult group
|
||||
*/
|
|
@ -0,0 +1,142 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_mult_q15.c
|
||||
* Description: Q15 vector multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 vector multiplication
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_mult_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inA1, inA2, inB1, inB2; /* temporary input variables */
|
||||
q15_t out1, out2, out3, out4; /* temporary output variables */
|
||||
q31_t mul1, mul2, mul3, mul4; /* temporary variables */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* read two samples at a time from sourceA */
|
||||
inA1 = *__SIMD32(pSrcA)++;
|
||||
/* read two samples at a time from sourceB */
|
||||
inB1 = *__SIMD32(pSrcB)++;
|
||||
/* read two samples at a time from sourceA */
|
||||
inA2 = *__SIMD32(pSrcA)++;
|
||||
/* read two samples at a time from sourceB */
|
||||
inB2 = *__SIMD32(pSrcB)++;
|
||||
|
||||
/* multiply mul = sourceA * sourceB */
|
||||
mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
|
||||
mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
|
||||
mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
|
||||
mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);
|
||||
|
||||
/* saturate result to 16 bit */
|
||||
out1 = (q15_t) __SSAT(mul1 >> 15, 16);
|
||||
out2 = (q15_t) __SSAT(mul2 >> 15, 16);
|
||||
out3 = (q15_t) __SSAT(mul3 >> 15, 16);
|
||||
out4 = (q15_t) __SSAT(mul4 >> 15, 16);
|
||||
|
||||
/* store the result */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
|
||||
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
|
||||
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the result in the destination buffer */
|
||||
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMult group
|
||||
*/
|
|
@ -0,0 +1,148 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_mult_q31.c
|
||||
* Description: Q31 vector multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q31 vector multiplication.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_mult_q31(
|
||||
q31_t * pSrcA,
|
||||
q31_t * pSrcB,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inA1, inA2, inA3, inA4; /* temporary input variables */
|
||||
q31_t inB1, inB2, inB3, inB4; /* temporary input variables */
|
||||
q31_t out1, out2, out3, out4; /* temporary output variables */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and then store the results in the destination buffer. */
|
||||
inA1 = *pSrcA++;
|
||||
inA2 = *pSrcA++;
|
||||
inA3 = *pSrcA++;
|
||||
inA4 = *pSrcA++;
|
||||
inB1 = *pSrcB++;
|
||||
inB2 = *pSrcB++;
|
||||
inB3 = *pSrcB++;
|
||||
inB4 = *pSrcB++;
|
||||
|
||||
out1 = ((q63_t) inA1 * inB1) >> 32;
|
||||
out2 = ((q63_t) inA2 * inB2) >> 32;
|
||||
out3 = ((q63_t) inA3 * inB3) >> 32;
|
||||
out4 = ((q63_t) inA4 * inB4) >> 32;
|
||||
|
||||
out1 = __SSAT(out1, 31);
|
||||
out2 = __SSAT(out2, 31);
|
||||
out3 = __SSAT(out3, 31);
|
||||
out4 = __SSAT(out4, 31);
|
||||
|
||||
*pDst++ = out1 << 1U;
|
||||
*pDst++ = out2 << 1U;
|
||||
*pDst++ = out3 << 1U;
|
||||
*pDst++ = out4 << 1U;
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and then store the results in the destination buffer. */
|
||||
inA1 = *pSrcA++;
|
||||
inB1 = *pSrcB++;
|
||||
out1 = ((q63_t) inA1 * inB1) >> 32;
|
||||
out1 = __SSAT(out1, 31);
|
||||
*pDst++ = out1 << 1U;
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and then store the results in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMult group
|
||||
*/
|
|
@ -0,0 +1,115 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_mult_q7.c
|
||||
* Description: Q7 vector multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector multiplication
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_mult_q7(
|
||||
q7_t * pSrcA,
|
||||
q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q7_t out1, out2, out3, out4; /* Temporary variables to store the product */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the results in temporary variables */
|
||||
out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
|
||||
out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
|
||||
out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
|
||||
out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
|
||||
|
||||
/* Store the results of 4 inputs in the destination buffer in single cycle by packing */
|
||||
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the result in the destination buffer */
|
||||
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMult group
|
||||
*/
|
|
@ -0,0 +1,134 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_negate_f32.c
|
||||
* Description: Negates floating-point vectors
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup negate Vector Negate
|
||||
*
|
||||
* Negates the elements of a vector.
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = -pSrc[n], 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* The functions support in-place computation allowing the source and
|
||||
* destination pointers to reference the same memory buffer.
|
||||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup negate
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Negates the elements of a floating-point vector.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_negate_f32(
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t in1, in2, in3, in4; /* temporary variables */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* read inputs from source */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
in3 = *(pSrc + 2);
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
/* negate the input */
|
||||
in1 = -in1;
|
||||
in2 = -in2;
|
||||
in3 = -in3;
|
||||
in4 = -in4;
|
||||
|
||||
/* store the result to destination */
|
||||
*pDst = in1;
|
||||
*(pDst + 1) = in2;
|
||||
*(pDst + 2) = in3;
|
||||
*(pDst + 3) = in4;
|
||||
|
||||
/* update pointers to process next samples */
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = -A */
|
||||
/* Negate and then store the results in the destination buffer. */
|
||||
*pDst++ = -*pSrc++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of negate group
|
||||
*/
|
|
@ -0,0 +1,131 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_negate_q15.c
|
||||
* Description: Negates Q15 vectors
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup negate
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Negates the elements of a Q15 vector.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* \par Conditions for optimum performance
|
||||
* Input and output buffers should be aligned by 32-bit
|
||||
*
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
|
||||
*/
|
||||
|
||||
void arm_negate_q15(
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q15_t in;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q31_t in1, in2; /* Temporary variables */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = -A */
|
||||
/* Read two inputs at a time */
|
||||
in1 = _SIMD32_OFFSET(pSrc);
|
||||
in2 = _SIMD32_OFFSET(pSrc + 2);
|
||||
|
||||
/* negate two samples at a time */
|
||||
in1 = __QSUB16(0, in1);
|
||||
|
||||
/* negate two samples at a time */
|
||||
in2 = __QSUB16(0, in2);
|
||||
|
||||
/* store the result to destination 2 samples at a time */
|
||||
_SIMD32_OFFSET(pDst) = in1;
|
||||
/* store the result to destination 2 samples at a time */
|
||||
_SIMD32_OFFSET(pDst + 2) = in2;
|
||||
|
||||
|
||||
/* update pointers to process next samples */
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = -A */
|
||||
/* Negate and then store the result in the destination buffer. */
|
||||
in = *pSrc++;
|
||||
*pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of negate group
|
||||
*/
|
|
@ -0,0 +1,117 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_negate_q31.c
|
||||
* Description: Negates Q31 vectors
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup negate
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Negates the elements of a Q31 vector.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
|
||||
*/
|
||||
|
||||
void arm_negate_q31(
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q31_t in; /* Temporary variable */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t in1, in2, in3, in4;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = -A */
|
||||
/* Negate and then store the results in the destination buffer. */
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
in3 = *pSrc++;
|
||||
in4 = *pSrc++;
|
||||
|
||||
*pDst++ = __QSUB(0, in1);
|
||||
*pDst++ = __QSUB(0, in2);
|
||||
*pDst++ = __QSUB(0, in3);
|
||||
*pDst++ = __QSUB(0, in4);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = -A */
|
||||
/* Negate and then store the result in the destination buffer. */
|
||||
in = *pSrc++;
|
||||
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of negate group
|
||||
*/
|
|
@ -0,0 +1,113 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_negate_q7.c
|
||||
* Description: Negates Q7 vectors
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup negate
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Negates the elements of a Q7 vector.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F.
|
||||
*/
|
||||
|
||||
void arm_negate_q7(
|
||||
q7_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q7_t in;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t input; /* Input values1-4 */
|
||||
q31_t zero = 0x00000000;
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = -A */
|
||||
/* Read four inputs */
|
||||
input = *__SIMD32(pSrc)++;
|
||||
|
||||
/* Store the Negated results in the destination buffer in a single cycle by packing the results */
|
||||
*__SIMD32(pDst)++ = __QSUB8(zero, input);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = -A */
|
||||
/* Negate and then store the results in the destination buffer. */ \
|
||||
in = *pSrc++;
|
||||
*pDst++ = (in == (q7_t) 0x80) ? 0x7f : -in;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of negate group
|
||||
*/
|
|
@ -0,0 +1,154 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_offset_f32.c
|
||||
* Description: Floating-point vector offset
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup offset Vector Offset
|
||||
*
|
||||
* Adds a constant offset to each element of a vector.
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = pSrc[n] + offset, 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* The functions support in-place computation allowing the source and
|
||||
* destination pointers to reference the same memory buffer.
|
||||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup offset
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Adds a constant offset to a floating-point vector.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] offset is the offset to be added
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
|
||||
void arm_offset_f32(
|
||||
float32_t * pSrc,
|
||||
float32_t offset,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t in1, in2, in3, in4;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the results in the destination buffer. */
|
||||
/* read samples from source */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
|
||||
/* add offset to input */
|
||||
in1 = in1 + offset;
|
||||
|
||||
/* read samples from source */
|
||||
in3 = *(pSrc + 2);
|
||||
|
||||
/* add offset to input */
|
||||
in2 = in2 + offset;
|
||||
|
||||
/* read samples from source */
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
/* add offset to input */
|
||||
in3 = in3 + offset;
|
||||
|
||||
/* store result to destination */
|
||||
*pDst = in1;
|
||||
|
||||
/* add offset to input */
|
||||
in4 = in4 + offset;
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 1) = in2;
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 2) = in3;
|
||||
|
||||
/* store result to destination */
|
||||
*(pDst + 3) = in4;
|
||||
|
||||
/* update pointers to process next samples */
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the result in the destination buffer. */
|
||||
*pDst++ = (*pSrc++) + offset;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of offset group
|
||||
*/
|
|
@ -0,0 +1,124 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_offset_q15.c
|
||||
* Description: Q15 vector offset
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup offset
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Adds a constant offset to a Q15 vector.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] offset is the offset to be added
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
|
||||
*/
|
||||
|
||||
void arm_offset_q15(
|
||||
q15_t * pSrc,
|
||||
q15_t offset,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t offset_packed; /* Offset packed to 32 bit */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* Offset is packed to 32 bit in order to use SIMD32 for addition */
|
||||
offset_packed = __PKHBT(offset, offset, 16);
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the results in the destination buffer, 2 samples at a time. */
|
||||
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed);
|
||||
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the results in the destination buffer. */
|
||||
*pDst++ = (q15_t) __QADD16(*pSrc++, offset);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the results in the destination buffer. */
|
||||
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrc++ + offset), 16);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of offset group
|
||||
*/
|
|
@ -0,0 +1,128 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_offset_q31.c
|
||||
* Description: Q31 vector offset
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup offset
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Adds a constant offset to a Q31 vector.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] offset is the offset to be added
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated.
|
||||
*/
|
||||
|
||||
void arm_offset_q31(
|
||||
q31_t * pSrc,
|
||||
q31_t offset,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t in1, in2, in3, in4;
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the results in the destination buffer. */
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
in3 = *pSrc++;
|
||||
in4 = *pSrc++;
|
||||
|
||||
*pDst++ = __QADD(in1, offset);
|
||||
*pDst++ = __QADD(in2, offset);
|
||||
*pDst++ = __QADD(in3, offset);
|
||||
*pDst++ = __QADD(in4, offset);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the result in the destination buffer. */
|
||||
*pDst++ = __QADD(*pSrc++, offset);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the result in the destination buffer. */
|
||||
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of offset group
|
||||
*/
|
|
@ -0,0 +1,123 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_offset_q7.c
|
||||
* Description: Q7 vector offset
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup offset
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Adds a constant offset to a Q7 vector.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] offset is the offset to be added
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q7 range [0x80 0x7F] are saturated.
|
||||
*/
|
||||
|
||||
void arm_offset_q7(
|
||||
q7_t * pSrc,
|
||||
q7_t offset,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t offset_packed; /* Offset packed to 32 bit */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* Offset is packed to 32 bit in order to use SIMD32 for addition */
|
||||
offset_packed = __PACKq7(offset, offset, offset, offset);
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the results in the destination bufferfor 4 samples at a time. */
|
||||
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrc)++, offset_packed);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the result in the destination buffer. */
|
||||
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A + offset */
|
||||
/* Add offset and then store the result in the destination buffer. */
|
||||
*pDst++ = (q7_t) __SSAT((q15_t) * pSrc++ + offset, 8);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of offset group
|
||||
*/
|
|
@ -0,0 +1,157 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_scale_f32.c
|
||||
* Description: Multiplies a floating-point vector by a scalar
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup scale Vector Scale
|
||||
*
|
||||
* Multiply a vector by a scalar value. For floating-point data, the algorithm used is:
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = pSrc[n] * scale, 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* In the fixed-point Q7, Q15, and Q31 functions, <code>scale</code> is represented by
|
||||
* a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
|
||||
* The shift allows the gain of the scaling operation to exceed 1.0.
|
||||
* The algorithm used with fixed-point data is:
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = (pSrc[n] * scaleFract) << shift, 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* The overall scale factor applied to the fixed-point data is
|
||||
* <pre>
|
||||
* scale = scaleFract * 2^shift.
|
||||
* </pre>
|
||||
*
|
||||
* The functions support in-place computation allowing the source and destination
|
||||
* pointers to reference the same memory buffer.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup scale
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Multiplies a floating-point vector by a scalar.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] scale scale factor to be applied
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
|
||||
void arm_scale_f32(
|
||||
float32_t * pSrc,
|
||||
float32_t scale,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t in1, in2, in3, in4; /* temporary variabels */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * scale */
|
||||
/* Scale the input and then store the results in the destination buffer. */
|
||||
/* read input samples from source */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
|
||||
/* multiply with scaling factor */
|
||||
in1 = in1 * scale;
|
||||
|
||||
/* read input sample from source */
|
||||
in3 = *(pSrc + 2);
|
||||
|
||||
/* multiply with scaling factor */
|
||||
in2 = in2 * scale;
|
||||
|
||||
/* read input sample from source */
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
/* multiply with scaling factor */
|
||||
in3 = in3 * scale;
|
||||
in4 = in4 * scale;
|
||||
/* store the result to destination */
|
||||
*pDst = in1;
|
||||
*(pDst + 1) = in2;
|
||||
*(pDst + 2) = in3;
|
||||
*(pDst + 3) = in4;
|
||||
|
||||
/* update pointers to process next samples */
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * scale */
|
||||
/* Scale the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (*pSrc++) * scale;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of scale group
|
||||
*/
|
|
@ -0,0 +1,150 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_scale_q15.c
|
||||
* Description: Multiplies a Q15 vector by a scalar
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup scale
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Multiplies a Q15 vector by a scalar.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] scaleFract fractional portion of the scale value
|
||||
* @param[in] shift number of bits to shift the result by
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
|
||||
* These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
|
||||
*/
|
||||
|
||||
|
||||
void arm_scale_q15(
|
||||
q15_t * pSrc,
|
||||
q15_t scaleFract,
|
||||
int8_t shift,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
int8_t kShift = 15 - shift; /* shift to apply after scaling */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q15_t in1, in2, in3, in4;
|
||||
q31_t inA1, inA2; /* Temporary variables */
|
||||
q31_t out1, out2, out3, out4;
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Reading 2 inputs from memory */
|
||||
inA1 = *__SIMD32(pSrc)++;
|
||||
inA2 = *__SIMD32(pSrc)++;
|
||||
|
||||
/* C = A * scale */
|
||||
/* Scale the inputs and then store the 2 results in the destination buffer
|
||||
* in single cycle by packing the outputs */
|
||||
out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
|
||||
out2 = (q31_t) ((q15_t) inA1 * scaleFract);
|
||||
out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
|
||||
out4 = (q31_t) ((q15_t) inA2 * scaleFract);
|
||||
|
||||
/* apply shifting */
|
||||
out1 = out1 >> kShift;
|
||||
out2 = out2 >> kShift;
|
||||
out3 = out3 >> kShift;
|
||||
out4 = out4 >> kShift;
|
||||
|
||||
/* saturate the output */
|
||||
in1 = (q15_t) (__SSAT(out1, 16));
|
||||
in2 = (q15_t) (__SSAT(out2, 16));
|
||||
in3 = (q15_t) (__SSAT(out3, 16));
|
||||
in4 = (q15_t) (__SSAT(out4, 16));
|
||||
|
||||
/* store the result to destination */
|
||||
*__SIMD32(pDst)++ = __PKHBT(in2, in1, 16);
|
||||
*__SIMD32(pDst)++ = __PKHBT(in4, in3, 16);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * scale */
|
||||
/* Scale the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (q15_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 16));
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * scale */
|
||||
/* Scale the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (q15_t) (__SSAT(((q31_t) * pSrc++ * scaleFract) >> kShift, 16));
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of scale group
|
||||
*/
|
|
@ -0,0 +1,227 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_scale_q31.c
|
||||
* Description: Multiplies a Q31 vector by a scalar
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup scale
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Multiplies a Q31 vector by a scalar.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] scaleFract fractional portion of the scale value
|
||||
* @param[in] shift number of bits to shift the result by
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
|
||||
* These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format.
|
||||
*/
|
||||
|
||||
void arm_scale_q31(
|
||||
q31_t * pSrc,
|
||||
q31_t scaleFract,
|
||||
int8_t shift,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
int8_t kShift = shift + 1; /* Shift to apply after scaling */
|
||||
int8_t sign = (kShift & 0x80);
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q31_t in, out;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q31_t in1, in2, in3, in4; /* temporary input variables */
|
||||
q31_t out1, out2, out3, out4; /* temporary output variabels */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
if (sign == 0U)
|
||||
{
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* read four inputs from source */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
in3 = *(pSrc + 2);
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
/* multiply input with scaler value */
|
||||
in1 = ((q63_t) in1 * scaleFract) >> 32;
|
||||
in2 = ((q63_t) in2 * scaleFract) >> 32;
|
||||
in3 = ((q63_t) in3 * scaleFract) >> 32;
|
||||
in4 = ((q63_t) in4 * scaleFract) >> 32;
|
||||
|
||||
/* apply shifting */
|
||||
out1 = in1 << kShift;
|
||||
out2 = in2 << kShift;
|
||||
|
||||
/* saturate the results. */
|
||||
if (in1 != (out1 >> kShift))
|
||||
out1 = 0x7FFFFFFF ^ (in1 >> 31);
|
||||
|
||||
if (in2 != (out2 >> kShift))
|
||||
out2 = 0x7FFFFFFF ^ (in2 >> 31);
|
||||
|
||||
out3 = in3 << kShift;
|
||||
out4 = in4 << kShift;
|
||||
|
||||
*pDst = out1;
|
||||
*(pDst + 1) = out2;
|
||||
|
||||
if (in3 != (out3 >> kShift))
|
||||
out3 = 0x7FFFFFFF ^ (in3 >> 31);
|
||||
|
||||
if (in4 != (out4 >> kShift))
|
||||
out4 = 0x7FFFFFFF ^ (in4 >> 31);
|
||||
|
||||
/* Store result destination */
|
||||
*(pDst + 2) = out3;
|
||||
*(pDst + 3) = out4;
|
||||
|
||||
/* Update pointers to process next sampels */
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* read four inputs from source */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
in3 = *(pSrc + 2);
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
/* multiply input with scaler value */
|
||||
in1 = ((q63_t) in1 * scaleFract) >> 32;
|
||||
in2 = ((q63_t) in2 * scaleFract) >> 32;
|
||||
in3 = ((q63_t) in3 * scaleFract) >> 32;
|
||||
in4 = ((q63_t) in4 * scaleFract) >> 32;
|
||||
|
||||
/* apply shifting */
|
||||
out1 = in1 >> -kShift;
|
||||
out2 = in2 >> -kShift;
|
||||
|
||||
out3 = in3 >> -kShift;
|
||||
out4 = in4 >> -kShift;
|
||||
|
||||
/* Store result destination */
|
||||
*pDst = out1;
|
||||
*(pDst + 1) = out2;
|
||||
|
||||
*(pDst + 2) = out3;
|
||||
*(pDst + 3) = out4;
|
||||
|
||||
/* Update pointers to process next sampels */
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
if (sign == 0)
|
||||
{
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * scale */
|
||||
/* Scale the input and then store the result in the destination buffer. */
|
||||
in = *pSrc++;
|
||||
in = ((q63_t) in * scaleFract) >> 32;
|
||||
|
||||
out = in << kShift;
|
||||
|
||||
if (in != (out >> kShift))
|
||||
out = 0x7FFFFFFF ^ (in >> 31);
|
||||
|
||||
*pDst++ = out;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * scale */
|
||||
/* Scale the input and then store the result in the destination buffer. */
|
||||
in = *pSrc++;
|
||||
in = ((q63_t) in * scaleFract) >> 32;
|
||||
|
||||
out = in >> -kShift;
|
||||
|
||||
*pDst++ = out;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of scale group
|
||||
*/
|
|
@ -0,0 +1,137 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_scale_q7.c
|
||||
* Description: Multiplies a Q7 vector by a scalar
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup scale
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Multiplies a Q7 vector by a scalar.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] scaleFract fractional portion of the scale value
|
||||
* @param[in] shift number of bits to shift the result by
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.7 format.
|
||||
* These are multiplied to yield a 2.14 intermediate result and this is shifted with saturation to 1.7 format.
|
||||
*/
|
||||
|
||||
void arm_scale_q7(
|
||||
q7_t * pSrc,
|
||||
q7_t scaleFract,
|
||||
int8_t shift,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
int8_t kShift = 7 - shift; /* shift to apply after scaling */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q7_t in1, in2, in3, in4, out1, out2, out3, out4; /* Temporary variables to store input & output */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Reading 4 inputs from memory */
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
in3 = *pSrc++;
|
||||
in4 = *pSrc++;
|
||||
|
||||
/* C = A * scale */
|
||||
/* Scale the inputs and then store the results in the temporary variables. */
|
||||
out1 = (q7_t) (__SSAT(((in1) * scaleFract) >> kShift, 8));
|
||||
out2 = (q7_t) (__SSAT(((in2) * scaleFract) >> kShift, 8));
|
||||
out3 = (q7_t) (__SSAT(((in3) * scaleFract) >> kShift, 8));
|
||||
out4 = (q7_t) (__SSAT(((in4) * scaleFract) >> kShift, 8));
|
||||
|
||||
/* Packing the individual outputs into 32bit and storing in
|
||||
* destination buffer in single write */
|
||||
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * scale */
|
||||
/* Scale the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (q7_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 8));
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * scale */
|
||||
/* Scale the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (q7_t) (__SSAT((((q15_t) * pSrc++ * scaleFract) >> kShift), 8));
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of scale group
|
||||
*/
|
|
@ -0,0 +1,236 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_shift_q15.c
|
||||
* Description: Shifts the elements of a Q15 vector by a specified number of bits
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup shift
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Shifts the elements of a Q15 vector a specified number of bits.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_shift_q15(
|
||||
q15_t * pSrc,
|
||||
int8_t shiftBits,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
uint8_t sign; /* Sign of shiftBits */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q15_t in1, in2; /* Temporary variables */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* Getting the sign of shiftBits */
|
||||
sign = (shiftBits & 0x80);
|
||||
|
||||
/* If the shift value is positive then do right shift else left shift */
|
||||
if (sign == 0U)
|
||||
{
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Read 2 inputs */
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
/* C = A << shiftBits */
|
||||
/* Shift the inputs and then store the results in the destination buffer. */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
|
||||
__SSAT((in2 << shiftBits), 16), 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
|
||||
__SSAT((in1 << shiftBits), 16), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
|
||||
__SSAT((in2 << shiftBits), 16), 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
|
||||
__SSAT((in1 << shiftBits), 16), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A << shiftBits */
|
||||
/* Shift and then store the results in the destination buffer. */
|
||||
*pDst++ = __SSAT((*pSrc++ << shiftBits), 16);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Read 2 inputs */
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
|
||||
/* C = A >> shiftBits */
|
||||
/* Shift the inputs and then store the results in the destination buffer. */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
|
||||
(in2 >> -shiftBits), 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
|
||||
(in1 >> -shiftBits), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
in1 = *pSrc++;
|
||||
in2 = *pSrc++;
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
|
||||
(in2 >> -shiftBits), 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
|
||||
(in1 >> -shiftBits), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A >> shiftBits */
|
||||
/* Shift the inputs and then store the results in the destination buffer. */
|
||||
*pDst++ = (*pSrc++ >> -shiftBits);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Getting the sign of shiftBits */
|
||||
sign = (shiftBits & 0x80);
|
||||
|
||||
/* If the shift value is positive then do right shift else left shift */
|
||||
if (sign == 0U)
|
||||
{
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A << shiftBits */
|
||||
/* Shift and then store the results in the destination buffer. */
|
||||
*pDst++ = __SSAT(((q31_t) * pSrc++ << shiftBits), 16);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A >> shiftBits */
|
||||
/* Shift the inputs and then store the results in the destination buffer. */
|
||||
*pDst++ = (*pSrc++ >> -shiftBits);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of shift group
|
||||
*/
|
|
@ -0,0 +1,191 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_shift_q31.c
|
||||
* Description: Shifts the elements of a Q31 vector by a specified number of bits
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
/**
|
||||
* @defgroup shift Vector Shift
|
||||
*
|
||||
* Shifts the elements of a fixed-point vector by a specified number of bits.
|
||||
* There are separate functions for Q7, Q15, and Q31 data types.
|
||||
* The underlying algorithm used is:
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = pSrc[n] << shift, 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* If <code>shift</code> is positive then the elements of the vector are shifted to the left.
|
||||
* If <code>shift</code> is negative then the elements of the vector are shifted to the right.
|
||||
*
|
||||
* The functions support in-place computation allowing the source and destination
|
||||
* pointers to reference the same memory buffer.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup shift
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Shifts the elements of a Q31 vector a specified number of bits.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_shift_q31(
|
||||
q31_t * pSrc,
|
||||
int8_t shiftBits,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
uint8_t sign = (shiftBits & 0x80); /* Sign of shiftBits */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
q31_t in1, in2, in3, in4; /* Temporary input variables */
|
||||
q31_t out1, out2, out3, out4; /* Temporary output variables */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
|
||||
if (sign == 0U)
|
||||
{
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A << shiftBits */
|
||||
/* Shift the input and then store the results in the destination buffer. */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
out1 = in1 << shiftBits;
|
||||
in3 = *(pSrc + 2);
|
||||
out2 = in2 << shiftBits;
|
||||
in4 = *(pSrc + 3);
|
||||
if (in1 != (out1 >> shiftBits))
|
||||
out1 = 0x7FFFFFFF ^ (in1 >> 31);
|
||||
|
||||
if (in2 != (out2 >> shiftBits))
|
||||
out2 = 0x7FFFFFFF ^ (in2 >> 31);
|
||||
|
||||
*pDst = out1;
|
||||
out3 = in3 << shiftBits;
|
||||
*(pDst + 1) = out2;
|
||||
out4 = in4 << shiftBits;
|
||||
|
||||
if (in3 != (out3 >> shiftBits))
|
||||
out3 = 0x7FFFFFFF ^ (in3 >> 31);
|
||||
|
||||
if (in4 != (out4 >> shiftBits))
|
||||
out4 = 0x7FFFFFFF ^ (in4 >> 31);
|
||||
|
||||
*(pDst + 2) = out3;
|
||||
*(pDst + 3) = out4;
|
||||
|
||||
/* Update destination pointer to process next sampels */
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A >> shiftBits */
|
||||
/* Shift the input and then store the results in the destination buffer. */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
in3 = *(pSrc + 2);
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
*pDst = (in1 >> -shiftBits);
|
||||
*(pDst + 1) = (in2 >> -shiftBits);
|
||||
*(pDst + 2) = (in3 >> -shiftBits);
|
||||
*(pDst + 3) = (in4 >> -shiftBits);
|
||||
|
||||
|
||||
pSrc += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A (>> or <<) shiftBits */
|
||||
/* Shift the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (sign == 0U) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) :
|
||||
(*pSrc++ >> -shiftBits);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of shift group
|
||||
*/
|
|
@ -0,0 +1,208 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_shift_q7.c
|
||||
* Description: Processing function for the Q7 Shifting
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup shift
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Shifts the elements of a Q7 vector a specified number of bits.
|
||||
* @param[in] *pSrc points to the input vector
|
||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in the vector
|
||||
* @return none.
|
||||
*
|
||||
* \par Conditions for optimum performance
|
||||
* Input and output buffers should be aligned by 32-bit
|
||||
*
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q7 range [0x8 0x7F] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_shift_q7(
|
||||
q7_t * pSrc,
|
||||
int8_t shiftBits,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
uint8_t sign; /* Sign of shiftBits */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q7_t in1; /* Input value1 */
|
||||
q7_t in2; /* Input value2 */
|
||||
q7_t in3; /* Input value3 */
|
||||
q7_t in4; /* Input value4 */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* Getting the sign of shiftBits */
|
||||
sign = (shiftBits & 0x80);
|
||||
|
||||
/* If the shift value is positive then do right shift else left shift */
|
||||
if (sign == 0U)
|
||||
{
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A << shiftBits */
|
||||
/* Read 4 inputs */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
in3 = *(pSrc + 2);
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */
|
||||
*__SIMD32(pDst)++ = __PACKq7(__SSAT((in1 << shiftBits), 8),
|
||||
__SSAT((in2 << shiftBits), 8),
|
||||
__SSAT((in3 << shiftBits), 8),
|
||||
__SSAT((in4 << shiftBits), 8));
|
||||
/* Update source pointer to process next sampels */
|
||||
pSrc += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A << shiftBits */
|
||||
/* Shift the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (q7_t) __SSAT((*pSrc++ << shiftBits), 8);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
shiftBits = -shiftBits;
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A >> shiftBits */
|
||||
/* Read 4 inputs */
|
||||
in1 = *pSrc;
|
||||
in2 = *(pSrc + 1);
|
||||
in3 = *(pSrc + 2);
|
||||
in4 = *(pSrc + 3);
|
||||
|
||||
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */
|
||||
*__SIMD32(pDst)++ = __PACKq7((in1 >> shiftBits), (in2 >> shiftBits),
|
||||
(in3 >> shiftBits), (in4 >> shiftBits));
|
||||
|
||||
|
||||
pSrc += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A >> shiftBits */
|
||||
/* Shift the input and then store the result in the destination buffer. */
|
||||
in1 = *pSrc++;
|
||||
*pDst++ = (in1 >> shiftBits);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Getting the sign of shiftBits */
|
||||
sign = (shiftBits & 0x80);
|
||||
|
||||
/* If the shift value is positive then do right shift else left shift */
|
||||
if (sign == 0U)
|
||||
{
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A << shiftBits */
|
||||
/* Shift the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (q7_t) __SSAT(((q15_t) * pSrc++ << shiftBits), 8);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A >> shiftBits */
|
||||
/* Shift the input and then store the result in the destination buffer. */
|
||||
*pDst++ = (*pSrc++ >> -shiftBits);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of shift group
|
||||
*/
|
|
@ -0,0 +1,138 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sub_f32.c
|
||||
* Description: Floating-point vector subtraction.
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BasicSub Vector Subtraction
|
||||
*
|
||||
* Element-by-element subtraction of two vectors.
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = pSrcA[n] - pSrcB[n], 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicSub
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point vector subtraction.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_sub_f32(
|
||||
float32_t * pSrcA,
|
||||
float32_t * pSrcB,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t inA1, inA2, inA3, inA4; /* temporary variables */
|
||||
float32_t inB1, inB2, inB3, inB4; /* temporary variables */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the results in the destination buffer. */
|
||||
/* Read 4 input samples from sourceA and sourceB */
|
||||
inA1 = *pSrcA;
|
||||
inB1 = *pSrcB;
|
||||
inA2 = *(pSrcA + 1);
|
||||
inB2 = *(pSrcB + 1);
|
||||
inA3 = *(pSrcA + 2);
|
||||
inB3 = *(pSrcB + 2);
|
||||
inA4 = *(pSrcA + 3);
|
||||
inB4 = *(pSrcB + 3);
|
||||
|
||||
/* dst = srcA - srcB */
|
||||
/* subtract and store the result */
|
||||
*pDst = inA1 - inB1;
|
||||
*(pDst + 1) = inA2 - inB2;
|
||||
*(pDst + 2) = inA3 - inB3;
|
||||
*(pDst + 3) = inA4 - inB4;
|
||||
|
||||
|
||||
/* Update pointers to process next sampels */
|
||||
pSrcA += 4U;
|
||||
pSrcB += 4U;
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the results in the destination buffer. */
|
||||
*pDst++ = (*pSrcA++) - (*pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicSub group
|
||||
*/
|
|
@ -0,0 +1,128 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sub_q15.c
|
||||
* Description: Q15 vector subtraction
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicSub
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 vector subtraction.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_sub_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the results in the destination buffer two samples at a time. */
|
||||
inA1 = *__SIMD32(pSrcA)++;
|
||||
inA2 = *__SIMD32(pSrcA)++;
|
||||
inB1 = *__SIMD32(pSrcB)++;
|
||||
inB2 = *__SIMD32(pSrcB)++;
|
||||
|
||||
*__SIMD32(pDst)++ = __QSUB16(inA1, inB1);
|
||||
*__SIMD32(pDst)++ = __QSUB16(inA2, inB2);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the result in the destination buffer. */
|
||||
*pDst++ = (q15_t) __QSUB16(*pSrcA++, *pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the result in the destination buffer. */
|
||||
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ - *pSrcB++), 16);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicSub group
|
||||
*/
|
|
@ -0,0 +1,134 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sub_q31.c
|
||||
* Description: Q31 vector subtraction
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicSub
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q31 vector subtraction.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_sub_q31(
|
||||
q31_t * pSrcA,
|
||||
q31_t * pSrcB,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inA1, inA2, inA3, inA4;
|
||||
q31_t inB1, inB2, inB3, inB4;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the results in the destination buffer. */
|
||||
inA1 = *pSrcA++;
|
||||
inA2 = *pSrcA++;
|
||||
inB1 = *pSrcB++;
|
||||
inB2 = *pSrcB++;
|
||||
|
||||
inA3 = *pSrcA++;
|
||||
inA4 = *pSrcA++;
|
||||
inB3 = *pSrcB++;
|
||||
inB4 = *pSrcB++;
|
||||
|
||||
*pDst++ = __QSUB(inA1, inB1);
|
||||
*pDst++ = __QSUB(inA2, inB2);
|
||||
*pDst++ = __QSUB(inA3, inB3);
|
||||
*pDst++ = __QSUB(inA4, inB4);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the result in the destination buffer. */
|
||||
*pDst++ = __QSUB(*pSrcA++, *pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the result in the destination buffer. */
|
||||
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ - *pSrcB++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicSub group
|
||||
*/
|
|
@ -0,0 +1,119 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sub_q7.c
|
||||
* Description: Q7 vector subtraction
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicSub
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector subtraction.
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_sub_q7(
|
||||
q7_t * pSrcA,
|
||||
q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the results in the destination buffer 4 samples at a time. */
|
||||
*__SIMD32(pDst)++ = __QSUB8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the result in the destination buffer. */
|
||||
*pDst++ = __SSAT(*pSrcA++ - *pSrcB++, 8);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Initialize blkCnt with number of samples */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A - B */
|
||||
/* Subtract and then store the result in the destination buffer. */
|
||||
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ - *pSrcB++, 8);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicSub group
|
||||
*/
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,379 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_const_structs.c
|
||||
* Description: Constant structs that are initialized for user convenience.
|
||||
* For example, some can be given as arguments to the arm_cfft_f32() or arm_rfft_f32() functions.
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_const_structs.h"
|
||||
|
||||
/* Floating-point structs */
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len16 = {
|
||||
16, twiddleCoef_16, armBitRevIndexTable16, ARMBITREVINDEXTABLE_16_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len32 = {
|
||||
32, twiddleCoef_32, armBitRevIndexTable32, ARMBITREVINDEXTABLE_32_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len64 = {
|
||||
64, twiddleCoef_64, armBitRevIndexTable64, ARMBITREVINDEXTABLE_64_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len128 = {
|
||||
128, twiddleCoef_128, armBitRevIndexTable128, ARMBITREVINDEXTABLE_128_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len256 = {
|
||||
256, twiddleCoef_256, armBitRevIndexTable256, ARMBITREVINDEXTABLE_256_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len512 = {
|
||||
512, twiddleCoef_512, armBitRevIndexTable512, ARMBITREVINDEXTABLE_512_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len1024 = {
|
||||
1024, twiddleCoef_1024, armBitRevIndexTable1024, ARMBITREVINDEXTABLE_1024_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len2048 = {
|
||||
2048, twiddleCoef_2048, armBitRevIndexTable2048, ARMBITREVINDEXTABLE_2048_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len4096 = {
|
||||
4096, twiddleCoef_4096, armBitRevIndexTable4096, ARMBITREVINDEXTABLE_4096_TABLE_LENGTH
|
||||
};
|
||||
|
||||
/* Fixed-point structs */
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len16 = {
|
||||
16, twiddleCoef_16_q31, armBitRevIndexTable_fixed_16, ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len32 = {
|
||||
32, twiddleCoef_32_q31, armBitRevIndexTable_fixed_32, ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len64 = {
|
||||
64, twiddleCoef_64_q31, armBitRevIndexTable_fixed_64, ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len128 = {
|
||||
128, twiddleCoef_128_q31, armBitRevIndexTable_fixed_128, ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len256 = {
|
||||
256, twiddleCoef_256_q31, armBitRevIndexTable_fixed_256, ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len512 = {
|
||||
512, twiddleCoef_512_q31, armBitRevIndexTable_fixed_512, ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len1024 = {
|
||||
1024, twiddleCoef_1024_q31, armBitRevIndexTable_fixed_1024, ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len2048 = {
|
||||
2048, twiddleCoef_2048_q31, armBitRevIndexTable_fixed_2048, ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len4096 = {
|
||||
4096, twiddleCoef_4096_q31, armBitRevIndexTable_fixed_4096, ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len16 = {
|
||||
16, twiddleCoef_16_q15, armBitRevIndexTable_fixed_16, ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len32 = {
|
||||
32, twiddleCoef_32_q15, armBitRevIndexTable_fixed_32, ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len64 = {
|
||||
64, twiddleCoef_64_q15, armBitRevIndexTable_fixed_64, ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len128 = {
|
||||
128, twiddleCoef_128_q15, armBitRevIndexTable_fixed_128, ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len256 = {
|
||||
256, twiddleCoef_256_q15, armBitRevIndexTable_fixed_256, ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len512 = {
|
||||
512, twiddleCoef_512_q15, armBitRevIndexTable_fixed_512, ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len1024 = {
|
||||
1024, twiddleCoef_1024_q15, armBitRevIndexTable_fixed_1024, ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len2048 = {
|
||||
2048, twiddleCoef_2048_q15, armBitRevIndexTable_fixed_2048, ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH
|
||||
};
|
||||
|
||||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len4096 = {
|
||||
4096, twiddleCoef_4096_q15, armBitRevIndexTable_fixed_4096, ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH
|
||||
};
|
||||
|
||||
/* Structure for real-value inputs */
|
||||
/* Floating-point structs */
|
||||
const arm_rfft_fast_instance_f32 arm_rfft_fast_sR_f32_len32 = {
|
||||
{ 16, twiddleCoef_32, armBitRevIndexTable32, ARMBITREVINDEXTABLE_16_TABLE_LENGTH },
|
||||
32U,
|
||||
(float32_t *)twiddleCoef_rfft_32
|
||||
};
|
||||
|
||||
const arm_rfft_fast_instance_f32 arm_rfft_fast_sR_f32_len64 = {
|
||||
{ 32, twiddleCoef_32, armBitRevIndexTable32, ARMBITREVINDEXTABLE_32_TABLE_LENGTH },
|
||||
64U,
|
||||
(float32_t *)twiddleCoef_rfft_64
|
||||
};
|
||||
|
||||
const arm_rfft_fast_instance_f32 arm_rfft_fast_sR_f32_len128 = {
|
||||
{ 64, twiddleCoef_64, armBitRevIndexTable64, ARMBITREVINDEXTABLE_64_TABLE_LENGTH },
|
||||
128U,
|
||||
(float32_t *)twiddleCoef_rfft_128
|
||||
};
|
||||
|
||||
const arm_rfft_fast_instance_f32 arm_rfft_fast_sR_f32_len256 = {
|
||||
{ 128, twiddleCoef_128, armBitRevIndexTable128, ARMBITREVINDEXTABLE_128_TABLE_LENGTH },
|
||||
256U,
|
||||
(float32_t *)twiddleCoef_rfft_256
|
||||
};
|
||||
|
||||
const arm_rfft_fast_instance_f32 arm_rfft_fast_sR_f32_len512 = {
|
||||
{ 256, twiddleCoef_256, armBitRevIndexTable256, ARMBITREVINDEXTABLE_256_TABLE_LENGTH },
|
||||
512U,
|
||||
(float32_t *)twiddleCoef_rfft_512
|
||||
};
|
||||
|
||||
const arm_rfft_fast_instance_f32 arm_rfft_fast_sR_f32_len1024 = {
|
||||
{ 512, twiddleCoef_512, armBitRevIndexTable512, ARMBITREVINDEXTABLE_512_TABLE_LENGTH },
|
||||
1024U,
|
||||
(float32_t *)twiddleCoef_rfft_1024
|
||||
};
|
||||
|
||||
const arm_rfft_fast_instance_f32 arm_rfft_fast_sR_f32_len2048 = {
|
||||
{ 1024, twiddleCoef_1024, armBitRevIndexTable1024, ARMBITREVINDEXTABLE_1024_TABLE_LENGTH },
|
||||
2048U,
|
||||
(float32_t *)twiddleCoef_rfft_2048
|
||||
};
|
||||
|
||||
const arm_rfft_fast_instance_f32 arm_rfft_fast_sR_f32_len4096 = {
|
||||
{ 2048, twiddleCoef_2048, armBitRevIndexTable2048, ARMBITREVINDEXTABLE_2048_TABLE_LENGTH },
|
||||
4096U,
|
||||
(float32_t *)twiddleCoef_rfft_4096
|
||||
};
|
||||
|
||||
/* Fixed-point structs */
|
||||
/* q31_t */
|
||||
extern const q31_t realCoefAQ31[8192];
|
||||
extern const q31_t realCoefBQ31[8192];
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len32 = {
|
||||
32U,
|
||||
0,
|
||||
1,
|
||||
256U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len16
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len64 = {
|
||||
64U,
|
||||
0,
|
||||
1,
|
||||
128U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len32
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len128 = {
|
||||
128U,
|
||||
0,
|
||||
1,
|
||||
64U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len64
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len256 = {
|
||||
256U,
|
||||
0,
|
||||
1,
|
||||
32U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len128
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len512 = {
|
||||
512U,
|
||||
0,
|
||||
1,
|
||||
16U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len256
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len1024 = {
|
||||
1024U,
|
||||
0,
|
||||
1,
|
||||
8U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len512
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len2048 = {
|
||||
2048U,
|
||||
0,
|
||||
1,
|
||||
4U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len1024
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len4096 = {
|
||||
4096U,
|
||||
0,
|
||||
1,
|
||||
2U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len2048
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q31 arm_rfft_sR_q31_len8192 = {
|
||||
8192U,
|
||||
0,
|
||||
1,
|
||||
1U,
|
||||
(q31_t*)realCoefAQ31,
|
||||
(q31_t*)realCoefBQ31,
|
||||
&arm_cfft_sR_q31_len4096
|
||||
};
|
||||
|
||||
/* q15_t */
|
||||
extern const q15_t realCoefAQ15[8192];
|
||||
extern const q15_t realCoefBQ15[8192];
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len32 = {
|
||||
32U,
|
||||
0,
|
||||
1,
|
||||
256U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len16
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len64 = {
|
||||
64U,
|
||||
0,
|
||||
1,
|
||||
128U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len32
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len128 = {
|
||||
128U,
|
||||
0,
|
||||
1,
|
||||
64U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len64
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len256 = {
|
||||
256U,
|
||||
0,
|
||||
1,
|
||||
32U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len128
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len512 = {
|
||||
512U,
|
||||
0,
|
||||
1,
|
||||
16U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len256
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len1024 = {
|
||||
1024U,
|
||||
0,
|
||||
1,
|
||||
8U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len512
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len2048 = {
|
||||
2048U,
|
||||
0,
|
||||
1,
|
||||
4U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len1024
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len4096 = {
|
||||
4096U,
|
||||
0,
|
||||
1,
|
||||
2U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len2048
|
||||
};
|
||||
|
||||
const arm_rfft_instance_q15 arm_rfft_sR_q15_len8192 = {
|
||||
8192U,
|
||||
0,
|
||||
1,
|
||||
1U,
|
||||
(q15_t*)realCoefAQ15,
|
||||
(q15_t*)realCoefBQ15,
|
||||
&arm_cfft_sR_q15_len4096
|
||||
};
|
|
@ -0,0 +1,171 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_conj_f32.c
|
||||
* Description: Floating-point complex conjugate
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup cmplx_conj Complex Conjugate
|
||||
*
|
||||
* Conjugates the elements of a complex data vector.
|
||||
*
|
||||
* The <code>pSrc</code> points to the source data and
|
||||
* <code>pDst</code> points to the where the result should be written.
|
||||
* <code>numSamples</code> specifies the number of complex samples
|
||||
* and the data in each array is stored in an interleaved fashion
|
||||
* (real, imag, real, imag, ...).
|
||||
* Each array has a total of <code>2*numSamples</code> values.
|
||||
* The underlying algorithm is used:
|
||||
*
|
||||
* <pre>
|
||||
* for(n=0; n<numSamples; n++) {
|
||||
* pDst[(2*n)+0)] = pSrc[(2*n)+0]; // real part
|
||||
* pDst[(2*n)+1)] = -pSrc[(2*n)+1]; // imag part
|
||||
* }
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_conj
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex conjugate.
|
||||
* @param *pSrc points to the input vector
|
||||
* @param *pDst points to the output vector
|
||||
* @param numSamples number of complex samples in each vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_cmplx_conj_f32(
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t inR1, inR2, inR3, inR4;
|
||||
float32_t inI1, inI2, inI3, inI4;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
|
||||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
|
||||
/* read real input samples */
|
||||
inR1 = pSrc[0];
|
||||
/* store real samples to destination */
|
||||
pDst[0] = inR1;
|
||||
inR2 = pSrc[2];
|
||||
pDst[2] = inR2;
|
||||
inR3 = pSrc[4];
|
||||
pDst[4] = inR3;
|
||||
inR4 = pSrc[6];
|
||||
pDst[6] = inR4;
|
||||
|
||||
/* read imaginary input samples */
|
||||
inI1 = pSrc[1];
|
||||
inI2 = pSrc[3];
|
||||
|
||||
/* conjugate input */
|
||||
inI1 = -inI1;
|
||||
|
||||
/* read imaginary input samples */
|
||||
inI3 = pSrc[5];
|
||||
|
||||
/* conjugate input */
|
||||
inI2 = -inI2;
|
||||
|
||||
/* read imaginary input samples */
|
||||
inI4 = pSrc[7];
|
||||
|
||||
/* conjugate input */
|
||||
inI3 = -inI3;
|
||||
|
||||
/* store imaginary samples to destination */
|
||||
pDst[1] = inI1;
|
||||
pDst[3] = inI2;
|
||||
|
||||
/* conjugate input */
|
||||
inI4 = -inI4;
|
||||
|
||||
/* store imaginary samples to destination */
|
||||
pDst[5] = inI3;
|
||||
|
||||
/* increment source pointer by 8 to process next sampels */
|
||||
pSrc += 8U;
|
||||
|
||||
/* store imaginary sample to destination */
|
||||
pDst[7] = inI4;
|
||||
|
||||
/* increment destination pointer by 8 to store next samples */
|
||||
pDst += 8U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
blkCnt = numSamples;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* realOut + j (imagOut) = realIn + j (-1) imagIn */
|
||||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
|
||||
*pDst++ = *pSrc++;
|
||||
*pDst++ = -*pSrc++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_conj group
|
||||
*/
|
|
@ -0,0 +1,149 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_conj_q15.c
|
||||
* Description: Q15 complex conjugate
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_conj
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 complex conjugate.
|
||||
* @param *pSrc points to the input vector
|
||||
* @param *pDst points to the output vector
|
||||
* @param numSamples number of complex samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
|
||||
*/
|
||||
|
||||
void arm_cmplx_conj_q15(
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q31_t in1, in2, in3, in4;
|
||||
q31_t zero = 0;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
|
||||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
|
||||
in1 = *__SIMD32(pSrc)++;
|
||||
in2 = *__SIMD32(pSrc)++;
|
||||
in3 = *__SIMD32(pSrc)++;
|
||||
in4 = *__SIMD32(pSrc)++;
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
in1 = __QASX(zero, in1);
|
||||
in2 = __QASX(zero, in2);
|
||||
in3 = __QASX(zero, in3);
|
||||
in4 = __QASX(zero, in4);
|
||||
|
||||
#else
|
||||
|
||||
in1 = __QSAX(zero, in1);
|
||||
in2 = __QSAX(zero, in2);
|
||||
in3 = __QSAX(zero, in3);
|
||||
in4 = __QSAX(zero, in4);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
in1 = ((uint32_t) in1 >> 16) | ((uint32_t) in1 << 16);
|
||||
in2 = ((uint32_t) in2 >> 16) | ((uint32_t) in2 << 16);
|
||||
in3 = ((uint32_t) in3 >> 16) | ((uint32_t) in3 << 16);
|
||||
in4 = ((uint32_t) in4 >> 16) | ((uint32_t) in4 << 16);
|
||||
|
||||
*__SIMD32(pDst)++ = in1;
|
||||
*__SIMD32(pDst)++ = in2;
|
||||
*__SIMD32(pDst)++ = in3;
|
||||
*__SIMD32(pDst)++ = in4;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
|
||||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
|
||||
*pDst++ = *pSrc++;
|
||||
*pDst++ = __SSAT(-*pSrc++, 16);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
q15_t in;
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
/* realOut + j (imagOut) = realIn+ j (-1) imagIn */
|
||||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
|
||||
*pDst++ = *pSrc++;
|
||||
in = *pSrc++;
|
||||
*pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_conj group
|
||||
*/
|
|
@ -0,0 +1,169 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_conj_q31.c
|
||||
* Description: Q31 complex conjugate
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_conj
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q31 complex conjugate.
|
||||
* @param *pSrc points to the input vector
|
||||
* @param *pDst points to the output vector
|
||||
* @param numSamples number of complex samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
|
||||
*/
|
||||
|
||||
void arm_cmplx_conj_q31(
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q31_t in; /* Input value */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t inR1, inR2, inR3, inR4; /* Temporary real variables */
|
||||
q31_t inI1, inI2, inI3, inI4; /* Temporary imaginary variables */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
|
||||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
|
||||
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */
|
||||
/* read real input sample */
|
||||
inR1 = pSrc[0];
|
||||
/* store real input sample */
|
||||
pDst[0] = inR1;
|
||||
|
||||
/* read imaginary input sample */
|
||||
inI1 = pSrc[1];
|
||||
|
||||
/* read real input sample */
|
||||
inR2 = pSrc[2];
|
||||
/* store real input sample */
|
||||
pDst[2] = inR2;
|
||||
|
||||
/* read imaginary input sample */
|
||||
inI2 = pSrc[3];
|
||||
|
||||
/* negate imaginary input sample */
|
||||
inI1 = __QSUB(0, inI1);
|
||||
|
||||
/* read real input sample */
|
||||
inR3 = pSrc[4];
|
||||
/* store real input sample */
|
||||
pDst[4] = inR3;
|
||||
|
||||
/* read imaginary input sample */
|
||||
inI3 = pSrc[5];
|
||||
|
||||
/* negate imaginary input sample */
|
||||
inI2 = __QSUB(0, inI2);
|
||||
|
||||
/* read real input sample */
|
||||
inR4 = pSrc[6];
|
||||
/* store real input sample */
|
||||
pDst[6] = inR4;
|
||||
|
||||
/* negate imaginary input sample */
|
||||
inI3 = __QSUB(0, inI3);
|
||||
|
||||
/* store imaginary input sample */
|
||||
inI4 = pSrc[7];
|
||||
|
||||
/* store imaginary input samples */
|
||||
pDst[1] = inI1;
|
||||
|
||||
/* negate imaginary input sample */
|
||||
inI4 = __QSUB(0, inI4);
|
||||
|
||||
/* store imaginary input samples */
|
||||
pDst[3] = inI2;
|
||||
|
||||
/* increment source pointer by 8 to proecess next samples */
|
||||
pSrc += 8U;
|
||||
|
||||
/* store imaginary input samples */
|
||||
pDst[5] = inI3;
|
||||
pDst[7] = inI4;
|
||||
|
||||
/* increment destination pointer by 8 to process next samples */
|
||||
pDst += 8U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
blkCnt = numSamples;
|
||||
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
|
||||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
|
||||
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */
|
||||
*pDst++ = *pSrc++;
|
||||
in = *pSrc++;
|
||||
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_conj group
|
||||
*/
|
|
@ -0,0 +1,191 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_dot_prod_f32.c
|
||||
* Description: Floating-point complex dot product
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup cmplx_dot_prod Complex Dot Product
|
||||
*
|
||||
* Computes the dot product of two complex vectors.
|
||||
* The vectors are multiplied element-by-element and then summed.
|
||||
*
|
||||
* The <code>pSrcA</code> points to the first complex input vector and
|
||||
* <code>pSrcB</code> points to the second complex input vector.
|
||||
* <code>numSamples</code> specifies the number of complex samples
|
||||
* and the data in each array is stored in an interleaved fashion
|
||||
* (real, imag, real, imag, ...).
|
||||
* Each array has a total of <code>2*numSamples</code> values.
|
||||
*
|
||||
* The underlying algorithm is used:
|
||||
* <pre>
|
||||
* realResult=0;
|
||||
* imagResult=0;
|
||||
* for(n=0; n<numSamples; n++) {
|
||||
* realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1];
|
||||
* imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0];
|
||||
* }
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_dot_prod
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex dot product
|
||||
* @param *pSrcA points to the first input vector
|
||||
* @param *pSrcB points to the second input vector
|
||||
* @param numSamples number of complex samples in each vector
|
||||
* @param *realResult real part of the result returned here
|
||||
* @param *imagResult imaginary part of the result returned here
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_cmplx_dot_prod_f32(
|
||||
float32_t * pSrcA,
|
||||
float32_t * pSrcB,
|
||||
uint32_t numSamples,
|
||||
float32_t * realResult,
|
||||
float32_t * imagResult)
|
||||
{
|
||||
float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result storage */
|
||||
float32_t a0,b0,c0,d0;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += a0 * c0;
|
||||
imag_sum += a0 * d0;
|
||||
real_sum -= b0 * d0;
|
||||
imag_sum += b0 * c0;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += a0 * c0;
|
||||
imag_sum += a0 * d0;
|
||||
real_sum -= b0 * d0;
|
||||
imag_sum += b0 * c0;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += a0 * c0;
|
||||
imag_sum += a0 * d0;
|
||||
real_sum -= b0 * d0;
|
||||
imag_sum += b0 * c0;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += a0 * c0;
|
||||
imag_sum += a0 * d0;
|
||||
real_sum -= b0 * d0;
|
||||
imag_sum += b0 * c0;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples & 0x3U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += a0 * c0;
|
||||
imag_sum += a0 * d0;
|
||||
real_sum -= b0 * d0;
|
||||
imag_sum += b0 * c0;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += a0 * c0;
|
||||
imag_sum += a0 * d0;
|
||||
real_sum -= b0 * d0;
|
||||
imag_sum += b0 * c0;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
/* Store the real and imaginary results in the destination buffers */
|
||||
*realResult = real_sum;
|
||||
*imagResult = imag_sum;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_dot_prod group
|
||||
*/
|
|
@ -0,0 +1,177 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_dot_prod_q15.c
|
||||
* Description: Processing function for the Q15 Complex Dot product
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_dot_prod
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 complex dot product
|
||||
* @param *pSrcA points to the first input vector
|
||||
* @param *pSrcB points to the second input vector
|
||||
* @param numSamples number of complex samples in each vector
|
||||
* @param *realResult real part of the result returned here
|
||||
* @param *imagResult imaginary part of the result returned here
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function is implemented using an internal 64-bit accumulator.
|
||||
* The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result.
|
||||
* These are accumulated in a 64-bit accumulator with 34.30 precision.
|
||||
* As a final step, the accumulators are converted to 8.24 format.
|
||||
* The return results <code>realResult</code> and <code>imagResult</code> are in 8.24 format.
|
||||
*/
|
||||
|
||||
void arm_cmplx_dot_prod_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
uint32_t numSamples,
|
||||
q31_t * realResult,
|
||||
q31_t * imagResult)
|
||||
{
|
||||
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
|
||||
q15_t a0,b0,c0,d0;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += (q31_t)a0 * c0;
|
||||
imag_sum += (q31_t)a0 * d0;
|
||||
real_sum -= (q31_t)b0 * d0;
|
||||
imag_sum += (q31_t)b0 * c0;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += (q31_t)a0 * c0;
|
||||
imag_sum += (q31_t)a0 * d0;
|
||||
real_sum -= (q31_t)b0 * d0;
|
||||
imag_sum += (q31_t)b0 * c0;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += (q31_t)a0 * c0;
|
||||
imag_sum += (q31_t)a0 * d0;
|
||||
real_sum -= (q31_t)b0 * d0;
|
||||
imag_sum += (q31_t)b0 * c0;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += (q31_t)a0 * c0;
|
||||
imag_sum += (q31_t)a0 * d0;
|
||||
real_sum -= (q31_t)b0 * d0;
|
||||
imag_sum += (q31_t)b0 * c0;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += (q31_t)a0 * c0;
|
||||
imag_sum += (q31_t)a0 * d0;
|
||||
real_sum -= (q31_t)b0 * d0;
|
||||
imag_sum += (q31_t)b0 * c0;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += a0 * c0;
|
||||
imag_sum += a0 * d0;
|
||||
real_sum -= b0 * d0;
|
||||
imag_sum += b0 * c0;
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
/* Store the real and imaginary results in 8.24 format */
|
||||
/* Convert real data in 34.30 to 8.24 by 6 right shifts */
|
||||
*realResult = (q31_t) (real_sum >> 6);
|
||||
/* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */
|
||||
*imagResult = (q31_t) (imag_sum >> 6);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_dot_prod group
|
||||
*/
|
|
@ -0,0 +1,175 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_dot_prod_q31.c
|
||||
* Description: Q31 complex dot product
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_dot_prod
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q31 complex dot product
|
||||
* @param *pSrcA points to the first input vector
|
||||
* @param *pSrcB points to the second input vector
|
||||
* @param numSamples number of complex samples in each vector
|
||||
* @param *realResult real part of the result returned here
|
||||
* @param *imagResult imaginary part of the result returned here
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function is implemented using an internal 64-bit accumulator.
|
||||
* The intermediate 1.31 by 1.31 multiplications are performed with 64-bit precision and then shifted to 16.48 format.
|
||||
* The internal real and imaginary accumulators are in 16.48 format and provide 15 guard bits.
|
||||
* Additions are nonsaturating and no overflow will occur as long as <code>numSamples</code> is less than 32768.
|
||||
* The return results <code>realResult</code> and <code>imagResult</code> are in 16.48 format.
|
||||
* Input down scaling is not required.
|
||||
*/
|
||||
|
||||
void arm_cmplx_dot_prod_q31(
|
||||
q31_t * pSrcA,
|
||||
q31_t * pSrcB,
|
||||
uint32_t numSamples,
|
||||
q63_t * realResult,
|
||||
q63_t * imagResult)
|
||||
{
|
||||
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
|
||||
q31_t a0,b0,c0,d0;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += ((q63_t)a0 * c0) >> 14;
|
||||
imag_sum += ((q63_t)a0 * d0) >> 14;
|
||||
real_sum -= ((q63_t)b0 * d0) >> 14;
|
||||
imag_sum += ((q63_t)b0 * c0) >> 14;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += ((q63_t)a0 * c0) >> 14;
|
||||
imag_sum += ((q63_t)a0 * d0) >> 14;
|
||||
real_sum -= ((q63_t)b0 * d0) >> 14;
|
||||
imag_sum += ((q63_t)b0 * c0) >> 14;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += ((q63_t)a0 * c0) >> 14;
|
||||
imag_sum += ((q63_t)a0 * d0) >> 14;
|
||||
real_sum -= ((q63_t)b0 * d0) >> 14;
|
||||
imag_sum += ((q63_t)b0 * c0) >> 14;
|
||||
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += ((q63_t)a0 * c0) >> 14;
|
||||
imag_sum += ((q63_t)a0 * d0) >> 14;
|
||||
real_sum -= ((q63_t)b0 * d0) >> 14;
|
||||
imag_sum += ((q63_t)b0 * c0) >> 14;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += ((q63_t)a0 * c0) >> 14;
|
||||
imag_sum += ((q63_t)a0 * d0) >> 14;
|
||||
real_sum -= ((q63_t)b0 * d0) >> 14;
|
||||
imag_sum += ((q63_t)b0 * c0) >> 14;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
a0 = *pSrcA++;
|
||||
b0 = *pSrcA++;
|
||||
c0 = *pSrcB++;
|
||||
d0 = *pSrcB++;
|
||||
|
||||
real_sum += ((q63_t)a0 * c0) >> 14;
|
||||
imag_sum += ((q63_t)a0 * d0) >> 14;
|
||||
real_sum -= ((q63_t)b0 * d0) >> 14;
|
||||
imag_sum += ((q63_t)b0 * c0) >> 14;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
/* Store the real and imaginary results in 16.48 format */
|
||||
*realResult = real_sum;
|
||||
*imagResult = imag_sum;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_dot_prod group
|
||||
*/
|
|
@ -0,0 +1,153 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mag_f32.c
|
||||
* Description: Floating-point complex magnitude
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup cmplx_mag Complex Magnitude
|
||||
*
|
||||
* Computes the magnitude of the elements of a complex data vector.
|
||||
*
|
||||
* The <code>pSrc</code> points to the source data and
|
||||
* <code>pDst</code> points to the where the result should be written.
|
||||
* <code>numSamples</code> specifies the number of complex samples
|
||||
* in the input array and the data is stored in an interleaved fashion
|
||||
* (real, imag, real, imag, ...).
|
||||
* The input array has a total of <code>2*numSamples</code> values;
|
||||
* the output array has a total of <code>numSamples</code> values.
|
||||
* The underlying algorithm is used:
|
||||
*
|
||||
* <pre>
|
||||
* for(n=0; n<numSamples; n++) {
|
||||
* pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
|
||||
* }
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_mag
|
||||
* @{
|
||||
*/
|
||||
/**
|
||||
* @brief Floating-point complex magnitude.
|
||||
* @param[in] *pSrc points to complex input buffer
|
||||
* @param[out] *pDst points to real output buffer
|
||||
* @param[in] numSamples number of complex samples in the input vector
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
void arm_cmplx_mag_f32(
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
float32_t realIn, imagIn; /* Temporary variables to hold input values */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
|
||||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
||||
realIn = *pSrc++;
|
||||
imagIn = *pSrc++;
|
||||
/* store the result in the destination buffer. */
|
||||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
|
||||
|
||||
realIn = *pSrc++;
|
||||
imagIn = *pSrc++;
|
||||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
|
||||
|
||||
realIn = *pSrc++;
|
||||
imagIn = *pSrc++;
|
||||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
|
||||
|
||||
realIn = *pSrc++;
|
||||
imagIn = *pSrc++;
|
||||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
||||
realIn = *pSrc++;
|
||||
imagIn = *pSrc++;
|
||||
/* store the result in the destination buffer. */
|
||||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
/* out = sqrt((real * real) + (imag * imag)) */
|
||||
realIn = *pSrc++;
|
||||
imagIn = *pSrc++;
|
||||
/* store the result in the destination buffer. */
|
||||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_mag group
|
||||
*/
|
|
@ -0,0 +1,141 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mag_q15.c
|
||||
* Description: Q15 complex magnitude
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_mag
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 complex magnitude
|
||||
* @param *pSrc points to the complex input vector
|
||||
* @param *pDst points to the real output vector
|
||||
* @param numSamples number of complex samples in the input vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 2.14 format.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mag_q15(
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
q31_t acc0, acc1; /* Accumulators */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q31_t in1, in2, in3, in4;
|
||||
q31_t acc2, acc3;
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
|
||||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
||||
in1 = *__SIMD32(pSrc)++;
|
||||
in2 = *__SIMD32(pSrc)++;
|
||||
in3 = *__SIMD32(pSrc)++;
|
||||
in4 = *__SIMD32(pSrc)++;
|
||||
|
||||
acc0 = __SMUAD(in1, in1);
|
||||
acc1 = __SMUAD(in2, in2);
|
||||
acc2 = __SMUAD(in3, in3);
|
||||
acc3 = __SMUAD(in4, in4);
|
||||
|
||||
/* store the result in 2.14 format in the destination buffer. */
|
||||
arm_sqrt_q15((q15_t) ((acc0) >> 17), pDst++);
|
||||
arm_sqrt_q15((q15_t) ((acc1) >> 17), pDst++);
|
||||
arm_sqrt_q15((q15_t) ((acc2) >> 17), pDst++);
|
||||
arm_sqrt_q15((q15_t) ((acc3) >> 17), pDst++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
||||
in1 = *__SIMD32(pSrc)++;
|
||||
acc0 = __SMUAD(in1, in1);
|
||||
|
||||
/* store the result in 2.14 format in the destination buffer. */
|
||||
arm_sqrt_q15((q15_t) (acc0 >> 17), pDst++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
q15_t real, imag; /* Temporary variables to hold input values */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
/* out = sqrt(real * real + imag * imag) */
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
|
||||
acc0 = (real * real);
|
||||
acc1 = (imag * imag);
|
||||
|
||||
/* store the result in 2.14 format in the destination buffer. */
|
||||
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_mag group
|
||||
*/
|
|
@ -0,0 +1,173 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mag_q31.c
|
||||
* Description: Q31 complex magnitude
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_mag
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q31 complex magnitude
|
||||
* @param *pSrc points to the complex input vector
|
||||
* @param *pDst points to the real output vector
|
||||
* @param numSamples number of complex samples in the input vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 2.30 format.
|
||||
* Input down scaling is not required.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mag_q31(
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
q31_t real, imag; /* Temporary variables to hold input values */
|
||||
q31_t acc0, acc1; /* Accumulators */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
q31_t real1, real2, imag1, imag2; /* Temporary variables to hold input values */
|
||||
q31_t out1, out2, out3, out4; /* Accumulators */
|
||||
q63_t mul1, mul2, mul3, mul4; /* Temporary variables */
|
||||
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* read complex input from source buffer */
|
||||
real1 = pSrc[0];
|
||||
imag1 = pSrc[1];
|
||||
real2 = pSrc[2];
|
||||
imag2 = pSrc[3];
|
||||
|
||||
/* calculate power of input values */
|
||||
mul1 = (q63_t) real1 *real1;
|
||||
mul2 = (q63_t) imag1 *imag1;
|
||||
mul3 = (q63_t) real2 *real2;
|
||||
mul4 = (q63_t) imag2 *imag2;
|
||||
|
||||
/* get the result to 3.29 format */
|
||||
out1 = (q31_t) (mul1 >> 33);
|
||||
out2 = (q31_t) (mul2 >> 33);
|
||||
out3 = (q31_t) (mul3 >> 33);
|
||||
out4 = (q31_t) (mul4 >> 33);
|
||||
|
||||
/* add real and imaginary accumulators */
|
||||
out1 = out1 + out2;
|
||||
out3 = out3 + out4;
|
||||
|
||||
/* read complex input from source buffer */
|
||||
real1 = pSrc[4];
|
||||
imag1 = pSrc[5];
|
||||
real2 = pSrc[6];
|
||||
imag2 = pSrc[7];
|
||||
|
||||
/* calculate square root */
|
||||
arm_sqrt_q31(out1, &pDst[0]);
|
||||
|
||||
/* calculate power of input values */
|
||||
mul1 = (q63_t) real1 *real1;
|
||||
|
||||
/* calculate square root */
|
||||
arm_sqrt_q31(out3, &pDst[1]);
|
||||
|
||||
/* calculate power of input values */
|
||||
mul2 = (q63_t) imag1 *imag1;
|
||||
mul3 = (q63_t) real2 *real2;
|
||||
mul4 = (q63_t) imag2 *imag2;
|
||||
|
||||
/* get the result to 3.29 format */
|
||||
out1 = (q31_t) (mul1 >> 33);
|
||||
out2 = (q31_t) (mul2 >> 33);
|
||||
out3 = (q31_t) (mul3 >> 33);
|
||||
out4 = (q31_t) (mul4 >> 33);
|
||||
|
||||
/* add real and imaginary accumulators */
|
||||
out1 = out1 + out2;
|
||||
out3 = out3 + out4;
|
||||
|
||||
/* calculate square root */
|
||||
arm_sqrt_q31(out1, &pDst[2]);
|
||||
|
||||
/* increment destination by 8 to process next samples */
|
||||
pSrc += 8U;
|
||||
|
||||
/* calculate square root */
|
||||
arm_sqrt_q31(out3, &pDst[3]);
|
||||
|
||||
/* increment destination by 4 to process next samples */
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
blkCnt = numSamples;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
acc0 = (q31_t) (((q63_t) real * real) >> 33);
|
||||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
|
||||
/* store the result in 2.30 format in the destination buffer. */
|
||||
arm_sqrt_q31(acc0 + acc1, pDst++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_mag group
|
||||
*/
|
|
@ -0,0 +1,204 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mag_squared_f32.c
|
||||
* Description: Floating-point complex magnitude squared
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup cmplx_mag_squared Complex Magnitude Squared
|
||||
*
|
||||
* Computes the magnitude squared of the elements of a complex data vector.
|
||||
*
|
||||
* The <code>pSrc</code> points to the source data and
|
||||
* <code>pDst</code> points to the where the result should be written.
|
||||
* <code>numSamples</code> specifies the number of complex samples
|
||||
* in the input array and the data is stored in an interleaved fashion
|
||||
* (real, imag, real, imag, ...).
|
||||
* The input array has a total of <code>2*numSamples</code> values;
|
||||
* the output array has a total of <code>numSamples</code> values.
|
||||
*
|
||||
* The underlying algorithm is used:
|
||||
*
|
||||
* <pre>
|
||||
* for(n=0; n<numSamples; n++) {
|
||||
* pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2;
|
||||
* }
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_mag_squared
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex magnitude squared
|
||||
* @param[in] *pSrc points to the complex input vector
|
||||
* @param[out] *pDst points to the real output vector
|
||||
* @param[in] numSamples number of complex samples in the input vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mag_squared_f32(
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
float32_t real, imag; /* Temporary variables to store real and imaginary values */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
float32_t real1, real2, real3, real4; /* Temporary variables to hold real values */
|
||||
float32_t imag1, imag2, imag3, imag4; /* Temporary variables to hold imaginary values */
|
||||
float32_t mul1, mul2, mul3, mul4; /* Temporary variables */
|
||||
float32_t mul5, mul6, mul7, mul8; /* Temporary variables */
|
||||
float32_t out1, out2, out3, out4; /* Temporary variables to hold output values */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
|
||||
/* read real input sample from source buffer */
|
||||
real1 = pSrc[0];
|
||||
/* read imaginary input sample from source buffer */
|
||||
imag1 = pSrc[1];
|
||||
|
||||
/* calculate power of real value */
|
||||
mul1 = real1 * real1;
|
||||
|
||||
/* read real input sample from source buffer */
|
||||
real2 = pSrc[2];
|
||||
|
||||
/* calculate power of imaginary value */
|
||||
mul2 = imag1 * imag1;
|
||||
|
||||
/* read imaginary input sample from source buffer */
|
||||
imag2 = pSrc[3];
|
||||
|
||||
/* calculate power of real value */
|
||||
mul3 = real2 * real2;
|
||||
|
||||
/* read real input sample from source buffer */
|
||||
real3 = pSrc[4];
|
||||
|
||||
/* calculate power of imaginary value */
|
||||
mul4 = imag2 * imag2;
|
||||
|
||||
/* read imaginary input sample from source buffer */
|
||||
imag3 = pSrc[5];
|
||||
|
||||
/* calculate power of real value */
|
||||
mul5 = real3 * real3;
|
||||
/* calculate power of imaginary value */
|
||||
mul6 = imag3 * imag3;
|
||||
|
||||
/* read real input sample from source buffer */
|
||||
real4 = pSrc[6];
|
||||
|
||||
/* accumulate real and imaginary powers */
|
||||
out1 = mul1 + mul2;
|
||||
|
||||
/* read imaginary input sample from source buffer */
|
||||
imag4 = pSrc[7];
|
||||
|
||||
/* accumulate real and imaginary powers */
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* calculate power of real value */
|
||||
mul7 = real4 * real4;
|
||||
/* calculate power of imaginary value */
|
||||
mul8 = imag4 * imag4;
|
||||
|
||||
/* store output to destination */
|
||||
pDst[0] = out1;
|
||||
|
||||
/* accumulate real and imaginary powers */
|
||||
out3 = mul5 + mul6;
|
||||
|
||||
/* store output to destination */
|
||||
pDst[1] = out2;
|
||||
|
||||
/* accumulate real and imaginary powers */
|
||||
out4 = mul7 + mul8;
|
||||
|
||||
/* store output to destination */
|
||||
pDst[2] = out3;
|
||||
|
||||
/* increment destination pointer by 8 to process next samples */
|
||||
pSrc += 8U;
|
||||
|
||||
/* store output to destination */
|
||||
pDst[3] = out4;
|
||||
|
||||
/* increment destination pointer by 4 to process next samples */
|
||||
pDst += 4U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
blkCnt = numSamples;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
|
||||
/* out = (real * real) + (imag * imag) */
|
||||
/* store the result in the destination buffer. */
|
||||
*pDst++ = (real * real) + (imag * imag);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_mag_squared group
|
||||
*/
|
|
@ -0,0 +1,136 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mag_squared_q15.c
|
||||
* Description: Q15 complex magnitude squared
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_mag_squared
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 complex magnitude squared
|
||||
* @param *pSrc points to the complex input vector
|
||||
* @param *pDst points to the real output vector
|
||||
* @param numSamples number of complex samples in the input vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mag_squared_q15(
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
q31_t acc0, acc1; /* Accumulators */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
q31_t in1, in2, in3, in4;
|
||||
q31_t acc2, acc3;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
|
||||
in1 = *__SIMD32(pSrc)++;
|
||||
in2 = *__SIMD32(pSrc)++;
|
||||
in3 = *__SIMD32(pSrc)++;
|
||||
in4 = *__SIMD32(pSrc)++;
|
||||
|
||||
acc0 = __SMUAD(in1, in1);
|
||||
acc1 = __SMUAD(in2, in2);
|
||||
acc2 = __SMUAD(in3, in3);
|
||||
acc3 = __SMUAD(in4, in4);
|
||||
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ = (q15_t) (acc0 >> 17);
|
||||
*pDst++ = (q15_t) (acc1 >> 17);
|
||||
*pDst++ = (q15_t) (acc2 >> 17);
|
||||
*pDst++ = (q15_t) (acc3 >> 17);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
|
||||
in1 = *__SIMD32(pSrc)++;
|
||||
acc0 = __SMUAD(in1, in1);
|
||||
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ = (q15_t) (acc0 >> 17);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
q15_t real, imag; /* Temporary variables to store real and imaginary values */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
/* out = ((real * real) + (imag * imag)) */
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
acc0 = (real * real);
|
||||
acc1 = (imag * imag);
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_mag_squared group
|
||||
*/
|
|
@ -0,0 +1,149 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mag_squared_q31.c
|
||||
* Description: Q31 complex magnitude squared
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cmplx_mag_squared
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 complex magnitude squared
|
||||
* @param *pSrc points to the complex input vector
|
||||
* @param *pDst points to the real output vector
|
||||
* @param numSamples number of complex samples in the input vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
|
||||
* Input down scaling is not required.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mag_squared_q31(
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
q31_t real, imag; /* Temporary variables to store real and imaginary values */
|
||||
q31_t acc0, acc1; /* Accumulators */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
acc0 = (q31_t) (((q63_t) real * real) >> 33);
|
||||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
|
||||
/* store the result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = acc0 + acc1;
|
||||
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
acc0 = (q31_t) (((q63_t) real * real) >> 33);
|
||||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
|
||||
/* store the result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = acc0 + acc1;
|
||||
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
acc0 = (q31_t) (((q63_t) real * real) >> 33);
|
||||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
|
||||
/* store the result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = acc0 + acc1;
|
||||
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
acc0 = (q31_t) (((q63_t) real * real) >> 33);
|
||||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
|
||||
/* store the result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = acc0 + acc1;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
acc0 = (q31_t) (((q63_t) real * real) >> 33);
|
||||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
|
||||
/* store the result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = acc0 + acc1;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
/* out = ((real * real) + (imag * imag)) */
|
||||
real = *pSrc++;
|
||||
imag = *pSrc++;
|
||||
acc0 = (q31_t) (((q63_t) real * real) >> 33);
|
||||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
|
||||
/* store the result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = acc0 + acc1;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cmplx_mag_squared group
|
||||
*/
|
|
@ -0,0 +1,196 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mult_cmplx_f32.c
|
||||
* Description: Floating-point complex-by-complex multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup CmplxByCmplxMult Complex-by-Complex Multiplication
|
||||
*
|
||||
* Multiplies a complex vector by another complex vector and generates a complex result.
|
||||
* The data in the complex arrays is stored in an interleaved fashion
|
||||
* (real, imag, real, imag, ...).
|
||||
* The parameter <code>numSamples</code> represents the number of complex
|
||||
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
|
||||
* real values.
|
||||
*
|
||||
* The underlying algorithm is used:
|
||||
*
|
||||
* <pre>
|
||||
* for(n=0; n<numSamples; n++) {
|
||||
* pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
|
||||
* pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
|
||||
* }
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup CmplxByCmplxMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex-by-complex multiplication
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mult_cmplx_f32(
|
||||
float32_t * pSrcA,
|
||||
float32_t * pSrcB,
|
||||
float32_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
float32_t a1, b1, c1, d1; /* Temporary variables to store real and imaginary values */
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t a2, b2, c2, d2; /* Temporary variables to store real and imaginary values */
|
||||
float32_t acc1, acc2, acc3, acc4;
|
||||
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a1 = *pSrcA; /* A[2 * i] */
|
||||
c1 = *pSrcB; /* B[2 * i] */
|
||||
|
||||
b1 = *(pSrcA + 1); /* A[2 * i + 1] */
|
||||
acc1 = a1 * c1; /* acc1 = A[2 * i] * B[2 * i] */
|
||||
|
||||
a2 = *(pSrcA + 2); /* A[2 * i + 2] */
|
||||
acc2 = (b1 * c1); /* acc2 = A[2 * i + 1] * B[2 * i] */
|
||||
|
||||
d1 = *(pSrcB + 1); /* B[2 * i + 1] */
|
||||
c2 = *(pSrcB + 2); /* B[2 * i + 2] */
|
||||
acc1 -= b1 * d1; /* acc1 = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
|
||||
|
||||
d2 = *(pSrcB + 3); /* B[2 * i + 3] */
|
||||
acc3 = a2 * c2; /* acc3 = A[2 * i + 2] * B[2 * i + 2] */
|
||||
|
||||
b2 = *(pSrcA + 3); /* A[2 * i + 3] */
|
||||
acc2 += (a1 * d1); /* acc2 = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
|
||||
|
||||
a1 = *(pSrcA + 4); /* A[2 * i + 4] */
|
||||
acc4 = (a2 * d2); /* acc4 = A[2 * i + 2] * B[2 * i + 3] */
|
||||
|
||||
c1 = *(pSrcB + 4); /* B[2 * i + 4] */
|
||||
acc3 -= (b2 * d2); /* acc3 = A[2 * i + 2] * B[2 * i + 2] - A[2 * i + 3] * B[2 * i + 3] */
|
||||
*pDst = acc1; /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
|
||||
|
||||
b1 = *(pSrcA + 5); /* A[2 * i + 5] */
|
||||
acc4 += b2 * c2; /* acc4 = A[2 * i + 2] * B[2 * i + 3] + A[2 * i + 3] * B[2 * i + 2] */
|
||||
|
||||
*(pDst + 1) = acc2; /* C[2 * i + 1] = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
|
||||
acc1 = (a1 * c1);
|
||||
|
||||
d1 = *(pSrcB + 5);
|
||||
acc2 = (b1 * c1);
|
||||
|
||||
*(pDst + 2) = acc3;
|
||||
*(pDst + 3) = acc4;
|
||||
|
||||
a2 = *(pSrcA + 6);
|
||||
acc1 -= (b1 * d1);
|
||||
|
||||
c2 = *(pSrcB + 6);
|
||||
acc2 += (a1 * d1);
|
||||
|
||||
b2 = *(pSrcA + 7);
|
||||
acc3 = (a2 * c2);
|
||||
|
||||
d2 = *(pSrcB + 7);
|
||||
acc4 = (b2 * c2);
|
||||
|
||||
*(pDst + 4) = acc1;
|
||||
pSrcA += 8U;
|
||||
|
||||
acc3 -= (b2 * d2);
|
||||
acc4 += (a2 * d2);
|
||||
|
||||
*(pDst + 5) = acc2;
|
||||
pSrcB += 8U;
|
||||
|
||||
*(pDst + 6) = acc3;
|
||||
*(pDst + 7) = acc4;
|
||||
|
||||
pDst += 8U;
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
blkCnt = numSamples;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a1 = *pSrcA++;
|
||||
b1 = *pSrcA++;
|
||||
c1 = *pSrcB++;
|
||||
d1 = *pSrcB++;
|
||||
|
||||
/* store the result in the destination buffer. */
|
||||
*pDst++ = (a1 * c1) - (b1 * d1);
|
||||
*pDst++ = (a1 * d1) + (b1 * c1);
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of CmplxByCmplxMult group
|
||||
*/
|
|
@ -0,0 +1,181 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mult_cmplx_q15.c
|
||||
* Description: Q15 complex-by-complex multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup CmplxByCmplxMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 complex-by-complex multiplication
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mult_cmplx_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
q15_t a, b, c, d; /* Temporary variables to store real and imaginary values */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
|
||||
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
|
||||
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
|
||||
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
|
||||
/* store the result in 3.13 format in the destination buffer. */
|
||||
*pDst++ =
|
||||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of CmplxByCmplxMult group
|
||||
*/
|
|
@ -0,0 +1,314 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mult_cmplx_q31.c
|
||||
* Description: Q31 complex-by-complex multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup CmplxByCmplxMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 complex-by-complex multiplication
|
||||
* @param[in] *pSrcA points to the first input vector
|
||||
* @param[in] *pSrcB points to the second input vector
|
||||
* @param[out] *pDst points to the output vector
|
||||
* @param[in] numSamples number of complex samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
|
||||
* Input down scaling is not required.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mult_cmplx_q31(
|
||||
q31_t * pSrcA,
|
||||
q31_t * pSrcB,
|
||||
q31_t * pDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
q31_t a, b, c, d; /* Temporary variables to store real and imaginary values */
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
q31_t mul1, mul2, mul3, mul4;
|
||||
q31_t out1, out2;
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
||||
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
||||
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
||||
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
||||
|
||||
mul1 = (mul1 >> 1);
|
||||
mul2 = (mul2 >> 1);
|
||||
mul3 = (mul3 >> 1);
|
||||
mul4 = (mul4 >> 1);
|
||||
|
||||
out1 = mul1 - mul2;
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* store the real result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out1;
|
||||
/* store the imag result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out2;
|
||||
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
||||
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
||||
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
||||
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
||||
|
||||
mul1 = (mul1 >> 1);
|
||||
mul2 = (mul2 >> 1);
|
||||
mul3 = (mul3 >> 1);
|
||||
mul4 = (mul4 >> 1);
|
||||
|
||||
out1 = mul1 - mul2;
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* store the real result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out1;
|
||||
/* store the imag result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out2;
|
||||
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
||||
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
||||
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
||||
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
||||
|
||||
mul1 = (mul1 >> 1);
|
||||
mul2 = (mul2 >> 1);
|
||||
mul3 = (mul3 >> 1);
|
||||
mul4 = (mul4 >> 1);
|
||||
|
||||
out1 = mul1 - mul2;
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* store the real result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out1;
|
||||
/* store the imag result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out2;
|
||||
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
||||
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
||||
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
||||
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
||||
|
||||
mul1 = (mul1 >> 1);
|
||||
mul2 = (mul2 >> 1);
|
||||
mul3 = (mul3 >> 1);
|
||||
mul4 = (mul4 >> 1);
|
||||
|
||||
out1 = mul1 - mul2;
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* store the real result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out1;
|
||||
/* store the imag result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out2;
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
||||
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
||||
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
||||
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
||||
|
||||
mul1 = (mul1 >> 1);
|
||||
mul2 = (mul2 >> 1);
|
||||
mul3 = (mul3 >> 1);
|
||||
mul4 = (mul4 >> 1);
|
||||
|
||||
out1 = mul1 - mul2;
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* store the real result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out1;
|
||||
/* store the imag result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out2;
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = numSamples >> 1U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
|
||||
** a second loop below computes the remaining 1 sample. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
||||
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
||||
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
||||
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
||||
|
||||
mul1 = (mul1 >> 1);
|
||||
mul2 = (mul2 >> 1);
|
||||
mul3 = (mul3 >> 1);
|
||||
mul4 = (mul4 >> 1);
|
||||
|
||||
out1 = mul1 - mul2;
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* store the real result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out1;
|
||||
/* store the imag result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out2;
|
||||
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
||||
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
||||
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
||||
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
||||
|
||||
mul1 = (mul1 >> 1);
|
||||
mul2 = (mul2 >> 1);
|
||||
mul3 = (mul3 >> 1);
|
||||
mul4 = (mul4 >> 1);
|
||||
|
||||
out1 = mul1 - mul2;
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* store the real result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out1;
|
||||
/* store the imag result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out2;
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x2U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
||||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
||||
a = *pSrcA++;
|
||||
b = *pSrcA++;
|
||||
c = *pSrcB++;
|
||||
d = *pSrcB++;
|
||||
|
||||
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
||||
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
||||
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
||||
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
||||
|
||||
mul1 = (mul1 >> 1);
|
||||
mul2 = (mul2 >> 1);
|
||||
mul3 = (mul3 >> 1);
|
||||
mul4 = (mul4 >> 1);
|
||||
|
||||
out1 = mul1 - mul2;
|
||||
out2 = mul3 + mul4;
|
||||
|
||||
/* store the real result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out1;
|
||||
/* store the imag result in 3.29 format in the destination buffer. */
|
||||
*pDst++ = out2;
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of CmplxByCmplxMult group
|
||||
*/
|
|
@ -0,0 +1,213 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mult_real_f32.c
|
||||
* Description: Floating-point complex by real multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup CmplxByRealMult Complex-by-Real Multiplication
|
||||
*
|
||||
* Multiplies a complex vector by a real vector and generates a complex result.
|
||||
* The data in the complex arrays is stored in an interleaved fashion
|
||||
* (real, imag, real, imag, ...).
|
||||
* The parameter <code>numSamples</code> represents the number of complex
|
||||
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
|
||||
* real values while the real array has a total of <code>numSamples</code>
|
||||
* real values.
|
||||
*
|
||||
* The underlying algorithm is used:
|
||||
*
|
||||
* <pre>
|
||||
* for(n=0; n<numSamples; n++) {
|
||||
* pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n];
|
||||
* pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n];
|
||||
* }
|
||||
* </pre>
|
||||
*
|
||||
* There are separate functions for floating-point, Q15, and Q31 data types.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup CmplxByRealMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Floating-point complex-by-real multiplication
|
||||
* @param[in] *pSrcCmplx points to the complex input vector
|
||||
* @param[in] *pSrcReal points to the real input vector
|
||||
* @param[out] *pCmplxDst points to the complex output vector
|
||||
* @param[in] numSamples number of samples in each vector
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mult_real_f32(
|
||||
float32_t * pSrcCmplx,
|
||||
float32_t * pSrcReal,
|
||||
float32_t * pCmplxDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
float32_t in; /* Temporary variable to store input value */
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
float32_t inA1, inA2, inA3, inA4; /* Temporary variables to hold input data */
|
||||
float32_t inA5, inA6, inA7, inA8; /* Temporary variables to hold input data */
|
||||
float32_t inB1, inB2, inB3, inB4; /* Temporary variables to hold input data */
|
||||
float32_t out1, out2, out3, out4; /* Temporary variables to hold output data */
|
||||
float32_t out5, out6, out7, out8; /* Temporary variables to hold output data */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[i]. */
|
||||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
|
||||
/* read input from complex input buffer */
|
||||
inA1 = pSrcCmplx[0];
|
||||
inA2 = pSrcCmplx[1];
|
||||
/* read input from real input buffer */
|
||||
inB1 = pSrcReal[0];
|
||||
|
||||
/* read input from complex input buffer */
|
||||
inA3 = pSrcCmplx[2];
|
||||
|
||||
/* multiply complex buffer real input with real buffer input */
|
||||
out1 = inA1 * inB1;
|
||||
|
||||
/* read input from complex input buffer */
|
||||
inA4 = pSrcCmplx[3];
|
||||
|
||||
/* multiply complex buffer imaginary input with real buffer input */
|
||||
out2 = inA2 * inB1;
|
||||
|
||||
/* read input from real input buffer */
|
||||
inB2 = pSrcReal[1];
|
||||
/* read input from complex input buffer */
|
||||
inA5 = pSrcCmplx[4];
|
||||
|
||||
/* multiply complex buffer real input with real buffer input */
|
||||
out3 = inA3 * inB2;
|
||||
|
||||
/* read input from complex input buffer */
|
||||
inA6 = pSrcCmplx[5];
|
||||
/* read input from real input buffer */
|
||||
inB3 = pSrcReal[2];
|
||||
|
||||
/* multiply complex buffer imaginary input with real buffer input */
|
||||
out4 = inA4 * inB2;
|
||||
|
||||
/* read input from complex input buffer */
|
||||
inA7 = pSrcCmplx[6];
|
||||
|
||||
/* multiply complex buffer real input with real buffer input */
|
||||
out5 = inA5 * inB3;
|
||||
|
||||
/* read input from complex input buffer */
|
||||
inA8 = pSrcCmplx[7];
|
||||
|
||||
/* multiply complex buffer imaginary input with real buffer input */
|
||||
out6 = inA6 * inB3;
|
||||
|
||||
/* read input from real input buffer */
|
||||
inB4 = pSrcReal[3];
|
||||
|
||||
/* store result to destination bufer */
|
||||
pCmplxDst[0] = out1;
|
||||
|
||||
/* multiply complex buffer real input with real buffer input */
|
||||
out7 = inA7 * inB4;
|
||||
|
||||
/* store result to destination bufer */
|
||||
pCmplxDst[1] = out2;
|
||||
|
||||
/* multiply complex buffer imaginary input with real buffer input */
|
||||
out8 = inA8 * inB4;
|
||||
|
||||
/* store result to destination bufer */
|
||||
pCmplxDst[2] = out3;
|
||||
pCmplxDst[3] = out4;
|
||||
pCmplxDst[4] = out5;
|
||||
|
||||
/* incremnet complex input buffer by 8 to process next samples */
|
||||
pSrcCmplx += 8U;
|
||||
|
||||
/* store result to destination bufer */
|
||||
pCmplxDst[5] = out6;
|
||||
|
||||
/* increment real input buffer by 4 to process next samples */
|
||||
pSrcReal += 4U;
|
||||
|
||||
/* store result to destination bufer */
|
||||
pCmplxDst[6] = out7;
|
||||
pCmplxDst[7] = out8;
|
||||
|
||||
/* increment destination buffer by 8 to process next sampels */
|
||||
pCmplxDst += 8U;
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
blkCnt = numSamples;
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[i]. */
|
||||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
|
||||
in = *pSrcReal++;
|
||||
/* store the result in the destination buffer. */
|
||||
*pCmplxDst++ = (*pSrcCmplx++) * (in);
|
||||
*pCmplxDst++ = (*pSrcCmplx++) * (in);
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of CmplxByRealMult group
|
||||
*/
|
|
@ -0,0 +1,191 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mult_real_q15.c
|
||||
* Description: Q15 complex by real multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup CmplxByRealMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q15 complex-by-real multiplication
|
||||
* @param[in] *pSrcCmplx points to the complex input vector
|
||||
* @param[in] *pSrcReal points to the real input vector
|
||||
* @param[out] *pCmplxDst points to the complex output vector
|
||||
* @param[in] numSamples number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mult_real_q15(
|
||||
q15_t * pSrcCmplx,
|
||||
q15_t * pSrcReal,
|
||||
q15_t * pCmplxDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
q15_t in; /* Temporary variable to store input value */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
q31_t inA1, inA2; /* Temporary variables to hold input data */
|
||||
q31_t inB1; /* Temporary variables to hold input data */
|
||||
q15_t out1, out2, out3, out4; /* Temporary variables to hold output data */
|
||||
q31_t mul1, mul2, mul3, mul4; /* Temporary variables to hold intermediate data */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[i]. */
|
||||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
|
||||
/* read complex number both real and imaginary from complex input buffer */
|
||||
inA1 = *__SIMD32(pSrcCmplx)++;
|
||||
/* read two real values at a time from real input buffer */
|
||||
inB1 = *__SIMD32(pSrcReal)++;
|
||||
/* read complex number both real and imaginary from complex input buffer */
|
||||
inA2 = *__SIMD32(pSrcCmplx)++;
|
||||
|
||||
/* multiply complex number with real numbers */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
mul1 = (q31_t) ((q15_t) (inA1) * (q15_t) (inB1));
|
||||
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1));
|
||||
mul3 = (q31_t) ((q15_t) (inA2) * (q15_t) (inB1 >> 16));
|
||||
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB1 >> 16));
|
||||
|
||||
#else
|
||||
|
||||
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
|
||||
mul1 = (q31_t) ((q15_t) inA1 * (q15_t) (inB1 >> 16));
|
||||
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) inB1);
|
||||
mul3 = (q31_t) ((q15_t) inA2 * (q15_t) inB1);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* saturate the result */
|
||||
out1 = (q15_t) __SSAT(mul1 >> 15U, 16);
|
||||
out2 = (q15_t) __SSAT(mul2 >> 15U, 16);
|
||||
out3 = (q15_t) __SSAT(mul3 >> 15U, 16);
|
||||
out4 = (q15_t) __SSAT(mul4 >> 15U, 16);
|
||||
|
||||
/* pack real and imaginary outputs and store them to destination */
|
||||
*__SIMD32(pCmplxDst)++ = __PKHBT(out1, out2, 16);
|
||||
*__SIMD32(pCmplxDst)++ = __PKHBT(out3, out4, 16);
|
||||
|
||||
inA1 = *__SIMD32(pSrcCmplx)++;
|
||||
inB1 = *__SIMD32(pSrcReal)++;
|
||||
inA2 = *__SIMD32(pSrcCmplx)++;
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
mul1 = (q31_t) ((q15_t) (inA1) * (q15_t) (inB1));
|
||||
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1));
|
||||
mul3 = (q31_t) ((q15_t) (inA2) * (q15_t) (inB1 >> 16));
|
||||
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB1 >> 16));
|
||||
|
||||
#else
|
||||
|
||||
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
|
||||
mul1 = (q31_t) ((q15_t) inA1 * (q15_t) (inB1 >> 16));
|
||||
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) inB1);
|
||||
mul3 = (q31_t) ((q15_t) inA2 * (q15_t) inB1);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
out1 = (q15_t) __SSAT(mul1 >> 15U, 16);
|
||||
out2 = (q15_t) __SSAT(mul2 >> 15U, 16);
|
||||
out3 = (q15_t) __SSAT(mul3 >> 15U, 16);
|
||||
out4 = (q15_t) __SSAT(mul4 >> 15U, 16);
|
||||
|
||||
*__SIMD32(pCmplxDst)++ = __PKHBT(out1, out2, 16);
|
||||
*__SIMD32(pCmplxDst)++ = __PKHBT(out3, out4, 16);
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[i]. */
|
||||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
|
||||
in = *pSrcReal++;
|
||||
/* store the result in the destination buffer. */
|
||||
*pCmplxDst++ =
|
||||
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
|
||||
*pCmplxDst++ =
|
||||
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
/* realOut = realA * realB. */
|
||||
/* imagOut = imagA * realB. */
|
||||
in = *pSrcReal++;
|
||||
/* store the result in the destination buffer. */
|
||||
*pCmplxDst++ =
|
||||
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
|
||||
*pCmplxDst++ =
|
||||
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of CmplxByRealMult group
|
||||
*/
|
|
@ -0,0 +1,211 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cmplx_mult_real_q31.c
|
||||
* Description: Q31 complex by real multiplication
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupCmplxMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup CmplxByRealMult
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Q31 complex-by-real multiplication
|
||||
* @param[in] *pSrcCmplx points to the complex input vector
|
||||
* @param[in] *pSrcReal points to the real input vector
|
||||
* @param[out] *pCmplxDst points to the complex output vector
|
||||
* @param[in] numSamples number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_cmplx_mult_real_q31(
|
||||
q31_t * pSrcCmplx,
|
||||
q31_t * pSrcReal,
|
||||
q31_t * pCmplxDst,
|
||||
uint32_t numSamples)
|
||||
{
|
||||
q31_t inA1; /* Temporary variable to store input value */
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
uint32_t blkCnt; /* loop counters */
|
||||
q31_t inA2, inA3, inA4; /* Temporary variables to hold input data */
|
||||
q31_t inB1, inB2; /* Temporary variabels to hold input data */
|
||||
q31_t out1, out2, out3, out4; /* Temporary variables to hold output data */
|
||||
|
||||
/* loop Unrolling */
|
||||
blkCnt = numSamples >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[i]. */
|
||||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
|
||||
/* read real input from complex input buffer */
|
||||
inA1 = *pSrcCmplx++;
|
||||
inA2 = *pSrcCmplx++;
|
||||
/* read input from real input bufer */
|
||||
inB1 = *pSrcReal++;
|
||||
inB2 = *pSrcReal++;
|
||||
/* read imaginary input from complex input buffer */
|
||||
inA3 = *pSrcCmplx++;
|
||||
inA4 = *pSrcCmplx++;
|
||||
|
||||
/* multiply complex input with real input */
|
||||
out1 = ((q63_t) inA1 * inB1) >> 32;
|
||||
out2 = ((q63_t) inA2 * inB1) >> 32;
|
||||
out3 = ((q63_t) inA3 * inB2) >> 32;
|
||||
out4 = ((q63_t) inA4 * inB2) >> 32;
|
||||
|
||||
/* sature the result */
|
||||
out1 = __SSAT(out1, 31);
|
||||
out2 = __SSAT(out2, 31);
|
||||
out3 = __SSAT(out3, 31);
|
||||
out4 = __SSAT(out4, 31);
|
||||
|
||||
/* get result in 1.31 format */
|
||||
out1 = out1 << 1;
|
||||
out2 = out2 << 1;
|
||||
out3 = out3 << 1;
|
||||
out4 = out4 << 1;
|
||||
|
||||
/* store the result to destination buffer */
|
||||
*pCmplxDst++ = out1;
|
||||
*pCmplxDst++ = out2;
|
||||
*pCmplxDst++ = out3;
|
||||
*pCmplxDst++ = out4;
|
||||
|
||||
/* read real input from complex input buffer */
|
||||
inA1 = *pSrcCmplx++;
|
||||
inA2 = *pSrcCmplx++;
|
||||
/* read input from real input bufer */
|
||||
inB1 = *pSrcReal++;
|
||||
inB2 = *pSrcReal++;
|
||||
/* read imaginary input from complex input buffer */
|
||||
inA3 = *pSrcCmplx++;
|
||||
inA4 = *pSrcCmplx++;
|
||||
|
||||
/* multiply complex input with real input */
|
||||
out1 = ((q63_t) inA1 * inB1) >> 32;
|
||||
out2 = ((q63_t) inA2 * inB1) >> 32;
|
||||
out3 = ((q63_t) inA3 * inB2) >> 32;
|
||||
out4 = ((q63_t) inA4 * inB2) >> 32;
|
||||
|
||||
/* sature the result */
|
||||
out1 = __SSAT(out1, 31);
|
||||
out2 = __SSAT(out2, 31);
|
||||
out3 = __SSAT(out3, 31);
|
||||
out4 = __SSAT(out4, 31);
|
||||
|
||||
/* get result in 1.31 format */
|
||||
out1 = out1 << 1;
|
||||
out2 = out2 << 1;
|
||||
out3 = out3 << 1;
|
||||
out4 = out4 << 1;
|
||||
|
||||
/* store the result to destination buffer */
|
||||
*pCmplxDst++ = out1;
|
||||
*pCmplxDst++ = out2;
|
||||
*pCmplxDst++ = out3;
|
||||
*pCmplxDst++ = out4;
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = numSamples % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C[2 * i] = A[2 * i] * B[i]. */
|
||||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
|
||||
/* read real input from complex input buffer */
|
||||
inA1 = *pSrcCmplx++;
|
||||
inA2 = *pSrcCmplx++;
|
||||
/* read input from real input bufer */
|
||||
inB1 = *pSrcReal++;
|
||||
|
||||
/* multiply complex input with real input */
|
||||
out1 = ((q63_t) inA1 * inB1) >> 32;
|
||||
out2 = ((q63_t) inA2 * inB1) >> 32;
|
||||
|
||||
/* sature the result */
|
||||
out1 = __SSAT(out1, 31);
|
||||
out2 = __SSAT(out2, 31);
|
||||
|
||||
/* get result in 1.31 format */
|
||||
out1 = out1 << 1;
|
||||
out2 = out2 << 1;
|
||||
|
||||
/* store the result to destination buffer */
|
||||
*pCmplxDst++ = out1;
|
||||
*pCmplxDst++ = out2;
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
while (numSamples > 0U)
|
||||
{
|
||||
/* realOut = realA * realB. */
|
||||
/* imagReal = imagA * realB. */
|
||||
inA1 = *pSrcReal++;
|
||||
/* store the result in the destination buffer. */
|
||||
*pCmplxDst++ =
|
||||
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31);
|
||||
*pCmplxDst++ =
|
||||
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31);
|
||||
|
||||
/* Decrement the numSamples loop counter */
|
||||
numSamples--;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of CmplxByRealMult group
|
||||
*/
|
|
@ -0,0 +1,74 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_pid_init_f32.c
|
||||
* Description: Floating-point PID Control initialization function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @addtogroup PID
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the floating-point PID Control.
|
||||
* @param[in,out] *S points to an instance of the PID structure.
|
||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state & 1 = reset the state.
|
||||
* @return none.
|
||||
* \par Description:
|
||||
* \par
|
||||
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
|
||||
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
|
||||
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
|
||||
* also sets the state variables to all zeros.
|
||||
*/
|
||||
|
||||
void arm_pid_init_f32(
|
||||
arm_pid_instance_f32 * S,
|
||||
int32_t resetStateFlag)
|
||||
{
|
||||
|
||||
/* Derived coefficient A0 */
|
||||
S->A0 = S->Kp + S->Ki + S->Kd;
|
||||
|
||||
/* Derived coefficient A1 */
|
||||
S->A1 = (-S->Kp) - ((float32_t) 2.0 * S->Kd);
|
||||
|
||||
/* Derived coefficient A2 */
|
||||
S->A2 = S->Kd;
|
||||
|
||||
/* Check whether state needs reset or not */
|
||||
if (resetStateFlag)
|
||||
{
|
||||
/* Clear the state buffer. The size will be always 3 samples */
|
||||
memset(S->state, 0, 3U * sizeof(float32_t));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of PID group
|
||||
*/
|
|
@ -0,0 +1,110 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_pid_init_q15.c
|
||||
* Description: Q15 PID Control initialization function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @addtogroup PID
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
* @param[in,out] *S points to an instance of the Q15 PID structure.
|
||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
||||
* @return none.
|
||||
* \par Description:
|
||||
* \par
|
||||
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
|
||||
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
|
||||
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
|
||||
* also sets the state variables to all zeros.
|
||||
*/
|
||||
|
||||
void arm_pid_init_q15(
|
||||
arm_pid_instance_q15 * S,
|
||||
int32_t resetStateFlag)
|
||||
{
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
/* Derived coefficient A0 */
|
||||
S->A0 = __QADD16(__QADD16(S->Kp, S->Ki), S->Kd);
|
||||
|
||||
/* Derived coefficients and pack into A1 */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
S->A1 = __PKHBT(-__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), S->Kd, 16);
|
||||
|
||||
#else
|
||||
|
||||
S->A1 = __PKHBT(S->Kd, -__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Check whether state needs reset or not */
|
||||
if (resetStateFlag)
|
||||
{
|
||||
/* Clear the state buffer. The size will be always 3 samples */
|
||||
memset(S->state, 0, 3U * sizeof(q15_t));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
q31_t temp; /*to store the sum */
|
||||
|
||||
/* Derived coefficient A0 */
|
||||
temp = S->Kp + S->Ki + S->Kd;
|
||||
S->A0 = (q15_t) __SSAT(temp, 16);
|
||||
|
||||
/* Derived coefficients and pack into A1 */
|
||||
temp = -(S->Kd + S->Kd + S->Kp);
|
||||
S->A1 = (q15_t) __SSAT(temp, 16);
|
||||
S->A2 = S->Kd;
|
||||
|
||||
|
||||
|
||||
/* Check whether state needs reset or not */
|
||||
if (resetStateFlag)
|
||||
{
|
||||
/* Clear the state buffer. The size will be always 3 samples */
|
||||
memset(S->state, 0, 3U * sizeof(q15_t));
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of PID group
|
||||
*/
|
|
@ -0,0 +1,95 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_pid_init_q31.c
|
||||
* Description: Q31 PID Control initialization function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @addtogroup PID
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the Q31 PID Control.
|
||||
* @param[in,out] *S points to an instance of the Q31 PID structure.
|
||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
||||
* @return none.
|
||||
* \par Description:
|
||||
* \par
|
||||
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
|
||||
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
|
||||
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
|
||||
* also sets the state variables to all zeros.
|
||||
*/
|
||||
|
||||
void arm_pid_init_q31(
|
||||
arm_pid_instance_q31 * S,
|
||||
int32_t resetStateFlag)
|
||||
{
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
/* Derived coefficient A0 */
|
||||
S->A0 = __QADD(__QADD(S->Kp, S->Ki), S->Kd);
|
||||
|
||||
/* Derived coefficient A1 */
|
||||
S->A1 = -__QADD(__QADD(S->Kd, S->Kd), S->Kp);
|
||||
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
q31_t temp;
|
||||
|
||||
/* Derived coefficient A0 */
|
||||
temp = clip_q63_to_q31((q63_t) S->Kp + S->Ki);
|
||||
S->A0 = clip_q63_to_q31((q63_t) temp + S->Kd);
|
||||
|
||||
/* Derived coefficient A1 */
|
||||
temp = clip_q63_to_q31((q63_t) S->Kd + S->Kd);
|
||||
S->A1 = -clip_q63_to_q31((q63_t) temp + S->Kp);
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
/* Derived coefficient A2 */
|
||||
S->A2 = S->Kd;
|
||||
|
||||
/* Check whether state needs reset or not */
|
||||
if (resetStateFlag)
|
||||
{
|
||||
/* Clear the state buffer. The size will be always 3 samples */
|
||||
memset(S->state, 0, 3U * sizeof(q31_t));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of PID group
|
||||
*/
|
|
@ -0,0 +1,53 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_pid_reset_f32.c
|
||||
* Description: Floating-point PID Control reset function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @addtogroup PID
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Reset function for the floating-point PID Control.
|
||||
* @param[in] *S Instance pointer of PID control data structure.
|
||||
* @return none.
|
||||
* \par Description:
|
||||
* The function resets the state buffer to zeros.
|
||||
*/
|
||||
void arm_pid_reset_f32(
|
||||
arm_pid_instance_f32 * S)
|
||||
{
|
||||
|
||||
/* Clear the state buffer. The size will be always 3 samples */
|
||||
memset(S->state, 0, 3U * sizeof(float32_t));
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of PID group
|
||||
*/
|
|
@ -0,0 +1,52 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_pid_reset_q15.c
|
||||
* Description: Q15 PID Control reset function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @addtogroup PID
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Reset function for the Q15 PID Control.
|
||||
* @param[in] *S Instance pointer of PID control data structure.
|
||||
* @return none.
|
||||
* \par Description:
|
||||
* The function resets the state buffer to zeros.
|
||||
*/
|
||||
void arm_pid_reset_q15(
|
||||
arm_pid_instance_q15 * S)
|
||||
{
|
||||
/* Reset state to zero, The size will be always 3 samples */
|
||||
memset(S->state, 0, 3U * sizeof(q15_t));
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of PID group
|
||||
*/
|
|
@ -0,0 +1,53 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_pid_reset_q31.c
|
||||
* Description: Q31 PID Control reset function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @addtogroup PID
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Reset function for the Q31 PID Control.
|
||||
* @param[in] *S Instance pointer of PID control data structure.
|
||||
* @return none.
|
||||
* \par Description:
|
||||
* The function resets the state buffer to zeros.
|
||||
*/
|
||||
void arm_pid_reset_q31(
|
||||
arm_pid_instance_q31 * S)
|
||||
{
|
||||
|
||||
/* Clear the state buffer. The size will be always 3 samples */
|
||||
memset(S->state, 0, 3U * sizeof(q31_t));
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of PID group
|
||||
*/
|
|
@ -0,0 +1,144 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sin_cos_f32.c
|
||||
* Description: Sine and Cosine calculation for floating-point values
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupController
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup SinCos Sine Cosine
|
||||
*
|
||||
* Computes the trigonometric sine and cosine values using a combination of table lookup
|
||||
* and linear interpolation.
|
||||
* There are separate functions for Q31 and floating-point data types.
|
||||
* The input to the floating-point version is in degrees while the
|
||||
* fixed-point Q31 have a scaled input with the range
|
||||
* [-1 0.9999] mapping to [-180 +180] degrees.
|
||||
*
|
||||
* The floating point function also allows values that are out of the usual range. When this happens, the function will
|
||||
* take extra time to adjust the input value to the range of [-180 180].
|
||||
*
|
||||
* The result is accurate to 5 digits after the decimal point.
|
||||
*
|
||||
* The implementation is based on table lookup using 360 values together with linear interpolation.
|
||||
* The steps used are:
|
||||
* -# Calculation of the nearest integer table index.
|
||||
* -# Compute the fractional portion (fract) of the input.
|
||||
* -# Fetch the value corresponding to \c index from sine table to \c y0 and also value from \c index+1 to \c y1.
|
||||
* -# Sine value is computed as <code> *psinVal = y0 + (fract * (y1 - y0))</code>.
|
||||
* -# Fetch the value corresponding to \c index from cosine table to \c y0 and also value from \c index+1 to \c y1.
|
||||
* -# Cosine value is computed as <code> *pcosVal = y0 + (fract * (y1 - y0))</code>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup SinCos
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Floating-point sin_cos function.
|
||||
* @param[in] theta input value in degrees
|
||||
* @param[out] *pSinVal points to the processed sine output.
|
||||
* @param[out] *pCosVal points to the processed cos output.
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_sin_cos_f32(
|
||||
float32_t theta,
|
||||
float32_t * pSinVal,
|
||||
float32_t * pCosVal)
|
||||
{
|
||||
float32_t fract, in; /* Temporary variables for input, output */
|
||||
uint16_t indexS, indexC; /* Index variable */
|
||||
float32_t f1, f2, d1, d2; /* Two nearest output values */
|
||||
float32_t findex, Dn, Df, temp;
|
||||
|
||||
/* input x is in degrees */
|
||||
/* Scale the input, divide input by 360, for cosine add 0.25 (pi/2) to read sine table */
|
||||
in = theta * 0.00277777777778f;
|
||||
|
||||
if (in < 0.0f)
|
||||
{
|
||||
in = -in;
|
||||
}
|
||||
|
||||
in = in - (int32_t)in;
|
||||
|
||||
/* Calculation of index of the table */
|
||||
findex = (float32_t) FAST_MATH_TABLE_SIZE * in;
|
||||
indexS = ((uint16_t)findex) & 0x1ff;
|
||||
indexC = (indexS + (FAST_MATH_TABLE_SIZE / 4)) & 0x1ff;
|
||||
|
||||
/* fractional value calculation */
|
||||
fract = findex - (float32_t) indexS;
|
||||
|
||||
/* Read two nearest values of input value from the cos & sin tables */
|
||||
f1 = sinTable_f32[indexC+0];
|
||||
f2 = sinTable_f32[indexC+1];
|
||||
d1 = -sinTable_f32[indexS+0];
|
||||
d2 = -sinTable_f32[indexS+1];
|
||||
|
||||
temp = (1.0f - fract) * f1 + fract * f2;
|
||||
|
||||
Dn = 0.0122718463030f; // delta between the two points (fixed), in this case 2*pi/FAST_MATH_TABLE_SIZE
|
||||
Df = f2 - f1; // delta between the values of the functions
|
||||
|
||||
temp = Dn *(d1 + d2) - 2 * Df;
|
||||
temp = fract * temp + (3 * Df - (d2 + 2 * d1) * Dn);
|
||||
temp = fract * temp + d1 * Dn;
|
||||
|
||||
/* Calculation of cosine value */
|
||||
*pCosVal = fract * temp + f1;
|
||||
|
||||
/* Read two nearest values of input value from the cos & sin tables */
|
||||
f1 = sinTable_f32[indexS+0];
|
||||
f2 = sinTable_f32[indexS+1];
|
||||
d1 = sinTable_f32[indexC+0];
|
||||
d2 = sinTable_f32[indexC+1];
|
||||
|
||||
temp = (1.0f - fract) * f1 + fract * f2;
|
||||
|
||||
Df = f2 - f1; // delta between the values of the functions
|
||||
temp = Dn*(d1 + d2) - 2*Df;
|
||||
temp = fract*temp + (3*Df - (d2 + 2*d1)*Dn);
|
||||
temp = fract*temp + d1*Dn;
|
||||
|
||||
/* Calculation of sine value */
|
||||
*pSinVal = fract*temp + f1;
|
||||
|
||||
if (theta < 0.0f)
|
||||
{
|
||||
*pSinVal = -*pSinVal;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @} end of SinCos group
|
||||
*/
|
|
@ -0,0 +1,110 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sin_cos_q31.c
|
||||
* Description: Cosine & Sine calculation for Q31 values
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupController
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup SinCos
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q31 sin_cos function.
|
||||
* @param[in] theta scaled input value in degrees
|
||||
* @param[out] *pSinVal points to the processed sine output.
|
||||
* @param[out] *pCosVal points to the processed cosine output.
|
||||
* @return none.
|
||||
*
|
||||
* The Q31 input value is in the range [-1 0.999999] and is mapped to a degree value in the range [-180 179].
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_sin_cos_q31(
|
||||
q31_t theta,
|
||||
q31_t * pSinVal,
|
||||
q31_t * pCosVal)
|
||||
{
|
||||
q31_t fract; /* Temporary variables for input, output */
|
||||
uint16_t indexS, indexC; /* Index variable */
|
||||
q31_t f1, f2, d1, d2; /* Two nearest output values */
|
||||
q31_t Dn, Df;
|
||||
q63_t temp;
|
||||
|
||||
/* Calculate the nearest index */
|
||||
indexS = (uint32_t)theta >> CONTROLLER_Q31_SHIFT;
|
||||
indexC = (indexS + 128) & 0x1ff;
|
||||
|
||||
/* Calculation of fractional value */
|
||||
fract = (theta - (indexS << CONTROLLER_Q31_SHIFT)) << 8;
|
||||
|
||||
/* Read two nearest values of input value from the cos & sin tables */
|
||||
f1 = sinTable_q31[indexC+0];
|
||||
f2 = sinTable_q31[indexC+1];
|
||||
d1 = -sinTable_q31[indexS+0];
|
||||
d2 = -sinTable_q31[indexS+1];
|
||||
|
||||
Dn = 0x1921FB5; // delta between the two points (fixed), in this case 2*pi/FAST_MATH_TABLE_SIZE
|
||||
Df = f2 - f1; // delta between the values of the functions
|
||||
temp = Dn*((q63_t)d1 + d2);
|
||||
temp = temp - ((q63_t)Df << 32);
|
||||
temp = (q63_t)fract*(temp >> 31);
|
||||
temp = temp + ((3*(q63_t)Df << 31) - (d2 + ((q63_t)d1 << 1))*Dn);
|
||||
temp = (q63_t)fract*(temp >> 31);
|
||||
temp = temp + (q63_t)d1*Dn;
|
||||
temp = (q63_t)fract*(temp >> 31);
|
||||
|
||||
/* Calculation of cosine value */
|
||||
*pCosVal = clip_q63_to_q31((temp >> 31) + (q63_t)f1);
|
||||
|
||||
/* Read two nearest values of input value from the cos & sin tables */
|
||||
f1 = sinTable_q31[indexS+0];
|
||||
f2 = sinTable_q31[indexS+1];
|
||||
d1 = sinTable_q31[indexC+0];
|
||||
d2 = sinTable_q31[indexC+1];
|
||||
|
||||
Df = f2 - f1; // delta between the values of the functions
|
||||
temp = Dn*((q63_t)d1 + d2);
|
||||
temp = temp - ((q63_t)Df << 32);
|
||||
temp = (q63_t)fract*(temp >> 31);
|
||||
temp = temp + ((3*(q63_t)Df << 31) - (d2 + ((q63_t)d1 << 1))*Dn);
|
||||
temp = (q63_t)fract*(temp >> 31);
|
||||
temp = temp + (q63_t)d1*Dn;
|
||||
temp = (q63_t)fract*(temp >> 31);
|
||||
|
||||
/* Calculation of sine value */
|
||||
*pSinVal = clip_q63_to_q31((temp >> 31) + (q63_t)f1);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of SinCos group
|
||||
*/
|
|
@ -0,0 +1,115 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cos_f32.c
|
||||
* Description: Fast cosine calculation for floating-point values
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup cos Cosine
|
||||
*
|
||||
* Computes the trigonometric cosine function using a combination of table lookup
|
||||
* and linear interpolation. There are separate functions for
|
||||
* Q15, Q31, and floating-point data types.
|
||||
* The input to the floating-point version is in radians and in the range [0 2*pi) while the
|
||||
* fixed-point Q15 and Q31 have a scaled input with the range
|
||||
* [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
|
||||
* value of 2*pi wraps around to 0.
|
||||
*
|
||||
* The implementation is based on table lookup using 256 values together with linear interpolation.
|
||||
* The steps used are:
|
||||
* -# Calculation of the nearest integer table index
|
||||
* -# Compute the fractional portion (fract) of the table index.
|
||||
* -# The final result equals <code>(1.0f-fract)*a + fract*b;</code>
|
||||
*
|
||||
* where
|
||||
* <pre>
|
||||
* b=Table[index+0];
|
||||
* c=Table[index+1];
|
||||
* </pre>
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cos
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric cosine function for floating-point data.
|
||||
* @param[in] x input value in radians.
|
||||
* @return cos(x).
|
||||
*/
|
||||
|
||||
float32_t arm_cos_f32(
|
||||
float32_t x)
|
||||
{
|
||||
float32_t cosVal, fract, in; /* Temporary variables for input, output */
|
||||
uint16_t index; /* Index variable */
|
||||
float32_t a, b; /* Two nearest output values */
|
||||
int32_t n;
|
||||
float32_t findex;
|
||||
|
||||
/* input x is in radians */
|
||||
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi, add 0.25 (pi/2) to read sine table */
|
||||
in = x * 0.159154943092f + 0.25f;
|
||||
|
||||
/* Calculation of floor value of input */
|
||||
n = (int32_t) in;
|
||||
|
||||
/* Make negative values towards -infinity */
|
||||
if (in < 0.0f)
|
||||
{
|
||||
n--;
|
||||
}
|
||||
|
||||
/* Map input value to [0 1] */
|
||||
in = in - (float32_t) n;
|
||||
|
||||
/* Calculation of index of the table */
|
||||
findex = (float32_t) FAST_MATH_TABLE_SIZE * in;
|
||||
index = ((uint16_t)findex) & 0x1ff;
|
||||
|
||||
/* fractional value calculation */
|
||||
fract = findex - (float32_t) index;
|
||||
|
||||
/* Read two nearest values of input value from the cos table */
|
||||
a = sinTable_f32[index];
|
||||
b = sinTable_f32[index+1];
|
||||
|
||||
/* Linear interpolation process */
|
||||
cosVal = (1.0f-fract)*a + fract*b;
|
||||
|
||||
/* Return the output value */
|
||||
return (cosVal);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cos group
|
||||
*/
|
|
@ -0,0 +1,84 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cos_q15.c
|
||||
* Description: Fast cosine calculation for Q15 values
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cos
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric cosine function for Q15 data.
|
||||
* @param[in] x Scaled input value in radians.
|
||||
* @return cos(x).
|
||||
*
|
||||
* The Q15 input value is in the range [0 +0.9999] and is mapped to a radian
|
||||
* value in the range [0 2*pi).
|
||||
*/
|
||||
|
||||
q15_t arm_cos_q15(
|
||||
q15_t x)
|
||||
{
|
||||
q15_t cosVal; /* Temporary variables for input, output */
|
||||
int32_t index; /* Index variables */
|
||||
q15_t a, b; /* Four nearest output values */
|
||||
q15_t fract; /* Temporary values for fractional values */
|
||||
|
||||
/* add 0.25 (pi/2) to read sine table */
|
||||
x = (uint16_t)x + 0x2000;
|
||||
if (x < 0)
|
||||
{ /* convert negative numbers to corresponding positive ones */
|
||||
x = (uint16_t)x + 0x8000;
|
||||
}
|
||||
|
||||
/* Calculate the nearest index */
|
||||
index = (uint32_t)x >> FAST_MATH_Q15_SHIFT;
|
||||
|
||||
/* Calculation of fractional value */
|
||||
fract = (x - (index << FAST_MATH_Q15_SHIFT)) << 9;
|
||||
|
||||
/* Read two nearest values of input value from the sin table */
|
||||
a = sinTable_q15[index];
|
||||
b = sinTable_q15[index+1];
|
||||
|
||||
/* Linear interpolation process */
|
||||
cosVal = (q31_t)(0x8000-fract)*a >> 16;
|
||||
cosVal = (q15_t)((((q31_t)cosVal << 16) + ((q31_t)fract*b)) >> 16);
|
||||
|
||||
return cosVal << 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cos group
|
||||
*/
|
|
@ -0,0 +1,84 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cos_q31.c
|
||||
* Description: Fast cosine calculation for Q31 values
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup cos
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric cosine function for Q31 data.
|
||||
* @param[in] x Scaled input value in radians.
|
||||
* @return cos(x).
|
||||
*
|
||||
* The Q31 input value is in the range [0 +0.9999] and is mapped to a radian
|
||||
* value in the range [0 2*pi).
|
||||
*/
|
||||
|
||||
q31_t arm_cos_q31(
|
||||
q31_t x)
|
||||
{
|
||||
q31_t cosVal; /* Temporary variables for input, output */
|
||||
int32_t index; /* Index variables */
|
||||
q31_t a, b; /* Four nearest output values */
|
||||
q31_t fract; /* Temporary values for fractional values */
|
||||
|
||||
/* add 0.25 (pi/2) to read sine table */
|
||||
x = (uint32_t)x + 0x20000000;
|
||||
if (x < 0)
|
||||
{ /* convert negative numbers to corresponding positive ones */
|
||||
x = (uint32_t)x + 0x80000000;
|
||||
}
|
||||
|
||||
/* Calculate the nearest index */
|
||||
index = (uint32_t)x >> FAST_MATH_Q31_SHIFT;
|
||||
|
||||
/* Calculation of fractional value */
|
||||
fract = (x - (index << FAST_MATH_Q31_SHIFT)) << 9;
|
||||
|
||||
/* Read two nearest values of input value from the sin table */
|
||||
a = sinTable_q31[index];
|
||||
b = sinTable_q31[index+1];
|
||||
|
||||
/* Linear interpolation process */
|
||||
cosVal = (q63_t)(0x80000000-fract)*a >> 32;
|
||||
cosVal = (q31_t)((((q63_t)cosVal << 32) + ((q63_t)fract*b)) >> 32);
|
||||
|
||||
return cosVal << 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of cos group
|
||||
*/
|
|
@ -0,0 +1,123 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sin_f32.c
|
||||
* Description: Fast sine calculation for floating-point values
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
#include <math.h>
|
||||
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup sin Sine
|
||||
*
|
||||
* Computes the trigonometric sine function using a combination of table lookup
|
||||
* and linear interpolation. There are separate functions for
|
||||
* Q15, Q31, and floating-point data types.
|
||||
* The input to the floating-point version is in radians and in the range [0 2*pi) while the
|
||||
* fixed-point Q15 and Q31 have a scaled input with the range
|
||||
* [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
|
||||
* value of 2*pi wraps around to 0.
|
||||
*
|
||||
* The implementation is based on table lookup using 256 values together with linear interpolation.
|
||||
* The steps used are:
|
||||
* -# Calculation of the nearest integer table index
|
||||
* -# Compute the fractional portion (fract) of the table index.
|
||||
* -# The final result equals <code>(1.0f-fract)*a + fract*b;</code>
|
||||
*
|
||||
* where
|
||||
* <pre>
|
||||
* b=Table[index+0];
|
||||
* c=Table[index+1];
|
||||
* </pre>
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup sin
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric sine function for floating-point data.
|
||||
* @param[in] x input value in radians.
|
||||
* @return sin(x).
|
||||
*/
|
||||
|
||||
float32_t arm_sin_f32(
|
||||
float32_t x)
|
||||
{
|
||||
float32_t sinVal, fract, in; /* Temporary variables for input, output */
|
||||
uint16_t index; /* Index variable */
|
||||
float32_t a, b; /* Two nearest output values */
|
||||
int32_t n;
|
||||
float32_t findex;
|
||||
|
||||
/* Special case for small negative inputs */
|
||||
if ((x < 0.0f) && (x >= -1.9e-7f)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
/* input x is in radians */
|
||||
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
|
||||
in = x * 0.159154943092f;
|
||||
|
||||
/* Calculation of floor value of input */
|
||||
n = (int32_t) in;
|
||||
|
||||
/* Make negative values towards -infinity */
|
||||
if (x < 0.0f)
|
||||
{
|
||||
n--;
|
||||
}
|
||||
|
||||
/* Map input value to [0 1] */
|
||||
in = in - (float32_t) n;
|
||||
|
||||
/* Calculation of index of the table */
|
||||
findex = (float32_t) FAST_MATH_TABLE_SIZE * in;
|
||||
|
||||
index = ((uint16_t)findex) & 0x1ff;
|
||||
|
||||
/* fractional value calculation */
|
||||
fract = findex - (float32_t) index;
|
||||
|
||||
/* Read two nearest values of input value from the sin table */
|
||||
a = sinTable_f32[index];
|
||||
b = sinTable_f32[index+1];
|
||||
|
||||
/* Linear interpolation process */
|
||||
sinVal = (1.0f-fract)*a + fract*b;
|
||||
|
||||
/* Return the output value */
|
||||
return (sinVal);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of sin group
|
||||
*/
|
|
@ -0,0 +1,76 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sin_q15.c
|
||||
* Description: Fast sine calculation for Q15 values
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup sin
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric sine function for Q15 data.
|
||||
* @param[in] x Scaled input value in radians.
|
||||
* @return sin(x).
|
||||
*
|
||||
* The Q15 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi).
|
||||
*/
|
||||
|
||||
q15_t arm_sin_q15(
|
||||
q15_t x)
|
||||
{
|
||||
q15_t sinVal; /* Temporary variables for input, output */
|
||||
int32_t index; /* Index variables */
|
||||
q15_t a, b; /* Four nearest output values */
|
||||
q15_t fract; /* Temporary values for fractional values */
|
||||
|
||||
/* Calculate the nearest index */
|
||||
index = (uint32_t)x >> FAST_MATH_Q15_SHIFT;
|
||||
|
||||
/* Calculation of fractional value */
|
||||
fract = (x - (index << FAST_MATH_Q15_SHIFT)) << 9;
|
||||
|
||||
/* Read two nearest values of input value from the sin table */
|
||||
a = sinTable_q15[index];
|
||||
b = sinTable_q15[index+1];
|
||||
|
||||
/* Linear interpolation process */
|
||||
sinVal = (q31_t)(0x8000-fract)*a >> 16;
|
||||
sinVal = (q15_t)((((q31_t)sinVal << 16) + ((q31_t)fract*b)) >> 16);
|
||||
|
||||
return sinVal << 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of sin group
|
||||
*/
|
|
@ -0,0 +1,75 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sin_q31.c
|
||||
* Description: Fast sine calculation for Q31 values
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup sin
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast approximation to the trigonometric sine function for Q31 data.
|
||||
* @param[in] x Scaled input value in radians.
|
||||
* @return sin(x).
|
||||
*
|
||||
* The Q31 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi). */
|
||||
|
||||
q31_t arm_sin_q31(
|
||||
q31_t x)
|
||||
{
|
||||
q31_t sinVal; /* Temporary variables for input, output */
|
||||
int32_t index; /* Index variables */
|
||||
q31_t a, b; /* Four nearest output values */
|
||||
q31_t fract; /* Temporary values for fractional values */
|
||||
|
||||
/* Calculate the nearest index */
|
||||
index = (uint32_t)x >> FAST_MATH_Q31_SHIFT;
|
||||
|
||||
/* Calculation of fractional value */
|
||||
fract = (x - (index << FAST_MATH_Q31_SHIFT)) << 9;
|
||||
|
||||
/* Read two nearest values of input value from the sin table */
|
||||
a = sinTable_q31[index];
|
||||
b = sinTable_q31[index+1];
|
||||
|
||||
/* Linear interpolation process */
|
||||
sinVal = (q63_t)(0x80000000-fract)*a >> 32;
|
||||
sinVal = (q31_t)((((q63_t)sinVal << 32) + ((q63_t)fract*b)) >> 32);
|
||||
|
||||
return sinVal << 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of sin group
|
||||
*/
|
|
@ -0,0 +1,144 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sqrt_q15.c
|
||||
* Description: Q15 square root function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup SQRT
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 square root function.
|
||||
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
|
||||
* @param[out] *pOut square root of input value.
|
||||
* @return The function returns ARM_MATH_SUCCESS if the input value is positive
|
||||
* and ARM_MATH_ARGUMENT_ERROR if the input is negative. For
|
||||
* negative inputs, the function returns *pOut = 0.
|
||||
*/
|
||||
|
||||
arm_status arm_sqrt_q15(
|
||||
q15_t in,
|
||||
q15_t * pOut)
|
||||
{
|
||||
q15_t number, temp1, var1, signBits1, half;
|
||||
q31_t bits_val1;
|
||||
float32_t temp_float1;
|
||||
union
|
||||
{
|
||||
q31_t fracval;
|
||||
float32_t floatval;
|
||||
} tempconv;
|
||||
|
||||
number = in;
|
||||
|
||||
/* If the input is a positive number then compute the signBits. */
|
||||
if (number > 0)
|
||||
{
|
||||
signBits1 = __CLZ(number) - 17;
|
||||
|
||||
/* Shift by the number of signBits1 */
|
||||
if ((signBits1 % 2) == 0)
|
||||
{
|
||||
number = number << signBits1;
|
||||
}
|
||||
else
|
||||
{
|
||||
number = number << (signBits1 - 1);
|
||||
}
|
||||
|
||||
/* Calculate half value of the number */
|
||||
half = number >> 1;
|
||||
/* Store the number for later use */
|
||||
temp1 = number;
|
||||
|
||||
/* Convert to float */
|
||||
temp_float1 = number * 3.051757812500000e-005f;
|
||||
/*Store as integer */
|
||||
tempconv.floatval = temp_float1;
|
||||
bits_val1 = tempconv.fracval;
|
||||
/* Subtract the shifted value from the magic number to give intial guess */
|
||||
bits_val1 = 0x5f3759df - (bits_val1 >> 1); /* gives initial guess */
|
||||
/* Store as float */
|
||||
tempconv.fracval = bits_val1;
|
||||
temp_float1 = tempconv.floatval;
|
||||
/* Convert to integer format */
|
||||
var1 = (q31_t) (temp_float1 * 16384);
|
||||
|
||||
/* 1st iteration */
|
||||
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
|
||||
((q15_t)
|
||||
((((q15_t)
|
||||
(((q31_t) var1 * var1) >> 15)) *
|
||||
(q31_t) half) >> 15))) >> 15)) << 2;
|
||||
/* 2nd iteration */
|
||||
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
|
||||
((q15_t)
|
||||
((((q15_t)
|
||||
(((q31_t) var1 * var1) >> 15)) *
|
||||
(q31_t) half) >> 15))) >> 15)) << 2;
|
||||
/* 3rd iteration */
|
||||
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
|
||||
((q15_t)
|
||||
((((q15_t)
|
||||
(((q31_t) var1 * var1) >> 15)) *
|
||||
(q31_t) half) >> 15))) >> 15)) << 2;
|
||||
|
||||
/* Multiply the inverse square root with the original value */
|
||||
var1 = ((q15_t) (((q31_t) temp1 * var1) >> 15)) << 1;
|
||||
|
||||
/* Shift the output down accordingly */
|
||||
if ((signBits1 % 2) == 0)
|
||||
{
|
||||
var1 = var1 >> (signBits1 / 2);
|
||||
}
|
||||
else
|
||||
{
|
||||
var1 = var1 >> ((signBits1 - 1) / 2);
|
||||
}
|
||||
*pOut = var1;
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
/* If the number is a negative number then store zero as its square root value */
|
||||
else
|
||||
{
|
||||
*pOut = 0;
|
||||
return (ARM_MATH_ARGUMENT_ERROR);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of SQRT group
|
||||
*/
|
|
@ -0,0 +1,142 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_sqrt_q31.c
|
||||
* Description: Q31 square root function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFastMath
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup SQRT
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q31 square root function.
|
||||
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
|
||||
* @param[out] *pOut square root of input value.
|
||||
* @return The function returns ARM_MATH_SUCCESS if the input value is positive
|
||||
* and ARM_MATH_ARGUMENT_ERROR if the input is negative. For
|
||||
* negative inputs, the function returns *pOut = 0.
|
||||
*/
|
||||
|
||||
arm_status arm_sqrt_q31(
|
||||
q31_t in,
|
||||
q31_t * pOut)
|
||||
{
|
||||
q31_t number, temp1, bits_val1, var1, signBits1, half;
|
||||
float32_t temp_float1;
|
||||
union
|
||||
{
|
||||
q31_t fracval;
|
||||
float32_t floatval;
|
||||
} tempconv;
|
||||
|
||||
number = in;
|
||||
|
||||
/* If the input is a positive number then compute the signBits. */
|
||||
if (number > 0)
|
||||
{
|
||||
signBits1 = __CLZ(number) - 1;
|
||||
|
||||
/* Shift by the number of signBits1 */
|
||||
if ((signBits1 % 2) == 0)
|
||||
{
|
||||
number = number << signBits1;
|
||||
}
|
||||
else
|
||||
{
|
||||
number = number << (signBits1 - 1);
|
||||
}
|
||||
|
||||
/* Calculate half value of the number */
|
||||
half = number >> 1;
|
||||
/* Store the number for later use */
|
||||
temp1 = number;
|
||||
|
||||
/*Convert to float */
|
||||
temp_float1 = number * 4.6566128731e-010f;
|
||||
/*Store as integer */
|
||||
tempconv.floatval = temp_float1;
|
||||
bits_val1 = tempconv.fracval;
|
||||
/* Subtract the shifted value from the magic number to give intial guess */
|
||||
bits_val1 = 0x5f3759df - (bits_val1 >> 1); /* gives initial guess */
|
||||
/* Store as float */
|
||||
tempconv.fracval = bits_val1;
|
||||
temp_float1 = tempconv.floatval;
|
||||
/* Convert to integer format */
|
||||
var1 = (q31_t) (temp_float1 * 1073741824);
|
||||
|
||||
/* 1st iteration */
|
||||
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
|
||||
((q31_t)
|
||||
((((q31_t)
|
||||
(((q63_t) var1 * var1) >> 31)) *
|
||||
(q63_t) half) >> 31))) >> 31)) << 2;
|
||||
/* 2nd iteration */
|
||||
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
|
||||
((q31_t)
|
||||
((((q31_t)
|
||||
(((q63_t) var1 * var1) >> 31)) *
|
||||
(q63_t) half) >> 31))) >> 31)) << 2;
|
||||
/* 3rd iteration */
|
||||
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
|
||||
((q31_t)
|
||||
((((q31_t)
|
||||
(((q63_t) var1 * var1) >> 31)) *
|
||||
(q63_t) half) >> 31))) >> 31)) << 2;
|
||||
|
||||
/* Multiply the inverse square root with the original value */
|
||||
var1 = ((q31_t) (((q63_t) temp1 * var1) >> 31)) << 1;
|
||||
|
||||
/* Shift the output down accordingly */
|
||||
if ((signBits1 % 2) == 0)
|
||||
{
|
||||
var1 = var1 >> (signBits1 / 2);
|
||||
}
|
||||
else
|
||||
{
|
||||
var1 = var1 >> ((signBits1 - 1) / 2);
|
||||
}
|
||||
*pOut = var1;
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
/* If the number is a negative number then store zero as its square root value */
|
||||
else
|
||||
{
|
||||
*pOut = 0;
|
||||
return (ARM_MATH_ARGUMENT_ERROR);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of SQRT group
|
||||
*/
|
|
@ -0,0 +1,98 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_32x64_init_q31.c
|
||||
* Description: High precision Q31 Biquad cascade filter initialization function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1_32x64
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
*
|
||||
* @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
|
||||
* @param[in] numStages number of 2nd order stages in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format.
|
||||
* @return none
|
||||
*
|
||||
* <b>Coefficient and State Ordering:</b>
|
||||
*
|
||||
* \par
|
||||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
|
||||
* <pre>
|
||||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
|
||||
* </pre>
|
||||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
|
||||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
|
||||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
|
||||
*
|
||||
* \par
|
||||
* The <code>pState</code> points to state variables array and size of each state variable is 1.63 format.
|
||||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
|
||||
* The state variables are arranged in the state array as:
|
||||
* <pre>
|
||||
* {x[n-1], x[n-2], y[n-1], y[n-2]}
|
||||
* </pre>
|
||||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>4*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*/
|
||||
|
||||
void arm_biquad_cas_df1_32x64_init_q31(
|
||||
arm_biquad_cas_df1_32x64_ins_q31 * S,
|
||||
uint8_t numStages,
|
||||
q31_t * pCoeffs,
|
||||
q63_t * pState,
|
||||
uint8_t postShift)
|
||||
{
|
||||
/* Assign filter stages */
|
||||
S->numStages = numStages;
|
||||
|
||||
/* Assign postShift to be applied to the output */
|
||||
S->postShift = postShift;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and size is always 4 * numStages */
|
||||
memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(q63_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1_32x64 group
|
||||
*/
|
|
@ -0,0 +1,549 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_32x64_q31.c
|
||||
* Description: High precision Q31 Biquad cascade filter processing function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BiquadCascadeDF1_32x64 High Precision Q31 Biquad Cascade Filter
|
||||
*
|
||||
* This function implements a high precision Biquad cascade filter which operates on
|
||||
* Q31 data values. The filter coefficients are in 1.31 format and the state variables
|
||||
* are in 1.63 format. The double precision state variables reduce quantization noise
|
||||
* in the filter and provide a cleaner output.
|
||||
* These filters are particularly useful when implementing filters in which the
|
||||
* singularities are close to the unit circle. This is common for low pass or high
|
||||
* pass filters with very low cutoff frequencies.
|
||||
*
|
||||
* The function operates on blocks of input and output data
|
||||
* and each call to the function processes <code>blockSize</code> samples through
|
||||
* the filter. <code>pSrc</code> and <code>pDst</code> points to input and output arrays
|
||||
* containing <code>blockSize</code> Q31 values.
|
||||
*
|
||||
* \par Algorithm
|
||||
* Each Biquad stage implements a second order filter using the difference equation:
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
* </pre>
|
||||
* A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
|
||||
* \image html Biquad.gif "Single Biquad filter stage"
|
||||
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
|
||||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
|
||||
* Pay careful attention to the sign of the feedback coefficients.
|
||||
* Some design tools use the difference equation
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
|
||||
* </pre>
|
||||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
|
||||
*
|
||||
* \par
|
||||
* Higher order filters are realized as a cascade of second order sections.
|
||||
* <code>numStages</code> refers to the number of second order stages used.
|
||||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
|
||||
* \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
|
||||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
|
||||
*
|
||||
* \par
|
||||
* The <code>pState</code> points to state variables array .
|
||||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code> and each state variable in 1.63 format to improve precision.
|
||||
* The state variables are arranged in the array as:
|
||||
* <pre>
|
||||
* {x[n-1], x[n-2], y[n-1], y[n-2]}
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>4*numStages</code> values of data in 1.63 format.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*
|
||||
* \par Instance Structure
|
||||
* The coefficients and state variables for a filter are stored together in an instance data structure.
|
||||
* A separate instance structure must be defined for each filter.
|
||||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
|
||||
*
|
||||
* \par Init Function
|
||||
* There is also an associated initialization function which performs the following operations:
|
||||
* - Sets the values of the internal structure fields.
|
||||
* - Zeros out the values in the state buffer.
|
||||
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
|
||||
* numStages, pCoeffs, postShift, pState. Also set all of the values in pState to zero.
|
||||
*
|
||||
* \par
|
||||
* Use of the initialization function is optional.
|
||||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
|
||||
* To place an instance structure into a const data section, the instance structure must be manually initialized.
|
||||
* Set the values in the state buffer to zeros before static initialization.
|
||||
* For example, to statically initialize the filter instance structure use
|
||||
* <pre>
|
||||
* arm_biquad_cas_df1_32x64_ins_q31 S1 = {numStages, pState, pCoeffs, postShift};
|
||||
* </pre>
|
||||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
|
||||
* <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied which is described in detail below.
|
||||
* \par Fixed-Point Behavior
|
||||
* Care must be taken while using Biquad Cascade 32x64 filter function.
|
||||
* Following issues must be considered:
|
||||
* - Scaling of coefficients
|
||||
* - Filter gain
|
||||
* - Overflow and saturation
|
||||
*
|
||||
* \par
|
||||
* Filter coefficients are represented as fractional values and
|
||||
* restricted to lie in the range <code>[-1 +1)</code>.
|
||||
* The processing function has an additional scaling parameter <code>postShift</code>
|
||||
* which allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
|
||||
* At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
|
||||
* \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
|
||||
* This essentially scales the filter coefficients by <code>2^postShift</code>.
|
||||
* For example, to realize the coefficients
|
||||
* <pre>
|
||||
* {1.5, -0.8, 1.2, 1.6, -0.9}
|
||||
* </pre>
|
||||
* set the Coefficient array to:
|
||||
* <pre>
|
||||
* {0.75, -0.4, 0.6, 0.8, -0.45}
|
||||
* </pre>
|
||||
* and set <code>postShift=1</code>
|
||||
*
|
||||
* \par
|
||||
* The second thing to keep in mind is the gain through the filter.
|
||||
* The frequency response of a Biquad filter is a function of its coefficients.
|
||||
* It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
|
||||
* This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
|
||||
* To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
|
||||
*
|
||||
* \par
|
||||
* The third item to consider is the overflow and saturation behavior of the fixed-point Q31 version.
|
||||
* This is described in the function specific documentation below.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1_32x64
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
|
||||
* @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process.
|
||||
* @return none.
|
||||
*
|
||||
* \par
|
||||
* The function is implemented using an internal 64-bit accumulator.
|
||||
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
||||
* Thus, if the accumulator result overflows it wraps around rather than clip.
|
||||
* In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
|
||||
* After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
|
||||
* 1.31 format by discarding the low 32 bits.
|
||||
*
|
||||
* \par
|
||||
* Two related functions are provided in the CMSIS DSP library.
|
||||
* <code>arm_biquad_cascade_df1_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q63 accumulator.
|
||||
* <code>arm_biquad_cascade_df1_fast_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q31 accumulator.
|
||||
*/
|
||||
|
||||
void arm_biquad_cas_df1_32x64_q31(
|
||||
const arm_biquad_cas_df1_32x64_ins_q31 * S,
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q31_t *pIn = pSrc; /* input pointer initialization */
|
||||
q31_t *pOut = pDst; /* output pointer initialization */
|
||||
q63_t *pState = S->pState; /* state pointer initialization */
|
||||
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
|
||||
q63_t acc; /* accumulator */
|
||||
q31_t Xn1, Xn2; /* Input Filter state variables */
|
||||
q63_t Yn1, Yn2; /* Output Filter state variables */
|
||||
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
|
||||
q31_t Xn; /* temporary input */
|
||||
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
|
||||
uint32_t sample, stage = S->numStages; /* loop counters */
|
||||
q31_t acc_l, acc_h; /* temporary output */
|
||||
uint32_t uShift = ((uint32_t) S->postShift + 1U);
|
||||
uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/* Reading the state values */
|
||||
Xn1 = (q31_t) (pState[0]);
|
||||
Xn2 = (q31_t) (pState[1]);
|
||||
Yn1 = pState[2];
|
||||
Yn2 = pState[3];
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously. */
|
||||
/* The variable acc hold output value that is being computed and
|
||||
* stored in the destination buffer
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
|
||||
sample = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) Xn *b0;
|
||||
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) Xn1 *b1;
|
||||
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) Xn2 *b2;
|
||||
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += mult32x64(Yn1, a1);
|
||||
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += mult32x64(Yn2, a2);
|
||||
|
||||
/* The result is converted to 1.63 , Yn2 variable is reused */
|
||||
Yn2 = acc << shift;
|
||||
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Store the output in the destination buffer in 1.31 format. */
|
||||
*pOut = acc_h;
|
||||
|
||||
/* Read the second input into Xn2, to reuse the value */
|
||||
Xn2 = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc = (q63_t) Xn *b1;
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc += (q63_t) Xn2 *b0;
|
||||
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) Xn1 *b2;
|
||||
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += mult32x64(Yn2, a1);
|
||||
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += mult32x64(Yn1, a2);
|
||||
|
||||
/* The result is converted to 1.63, Yn1 variable is reused */
|
||||
Yn1 = acc << shift;
|
||||
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Read the third input into Xn1, to reuse the value */
|
||||
Xn1 = *pIn++;
|
||||
|
||||
/* The result is converted to 1.31 */
|
||||
/* Store the output in the destination buffer. */
|
||||
*(pOut + 1U) = acc_h;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) Xn1 *b0;
|
||||
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) Xn2 *b1;
|
||||
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) Xn *b2;
|
||||
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += mult32x64(Yn1, a1);
|
||||
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += mult32x64(Yn2, a2);
|
||||
|
||||
/* The result is converted to 1.63, Yn2 variable is reused */
|
||||
Yn2 = acc << shift;
|
||||
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Store the output in the destination buffer in 1.31 format. */
|
||||
*(pOut + 2U) = acc_h;
|
||||
|
||||
/* Read the fourth input into Xn, to reuse the value */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) Xn *b0;
|
||||
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) Xn1 *b1;
|
||||
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) Xn2 *b2;
|
||||
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += mult32x64(Yn2, a1);
|
||||
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += mult32x64(Yn1, a2);
|
||||
|
||||
/* The result is converted to 1.63, Yn1 variable is reused */
|
||||
Yn1 = acc << shift;
|
||||
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Store the output in the destination buffer in 1.31 format. */
|
||||
*(pOut + 3U) = acc_h;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
|
||||
/* update output pointer */
|
||||
pOut += 4U;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
sample = (blockSize & 0x3U);
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) Xn *b0;
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) Xn1 *b1;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) Xn2 *b2;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += mult32x64(Yn1, a1);
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += mult32x64(Yn2, a2);
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
Yn2 = Yn1;
|
||||
/* The result is converted to 1.63, Yn1 variable is reused */
|
||||
Yn1 = acc << shift;
|
||||
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Store the output in the destination buffer in 1.31 format. */
|
||||
*pOut++ = acc_h;
|
||||
/* Yn1 = acc << shift; */
|
||||
|
||||
/* Store the output in the destination buffer in 1.31 format. */
|
||||
/* *pOut++ = (q31_t) (acc >> (32 - shift)); */
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* The first stage output is given as input to the second stage. */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset to destination buffer working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* Store the updated state variables back into the pState array */
|
||||
/* Store the updated state variables back into the pState array */
|
||||
*pState++ = (q63_t) Xn1;
|
||||
*pState++ = (q63_t) Xn2;
|
||||
*pState++ = Yn1;
|
||||
*pState++ = Yn2;
|
||||
|
||||
} while (--stage);
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/* Reading the state values */
|
||||
Xn1 = pState[0];
|
||||
Xn2 = pState[1];
|
||||
Yn1 = pState[2];
|
||||
Yn2 = pState[3];
|
||||
|
||||
/* The variable acc hold output value that is being computed and
|
||||
* stored in the destination buffer
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
|
||||
sample = blockSize;
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) Xn *b0;
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) Xn1 *b1;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) Xn2 *b2;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += mult32x64(Yn1, a1);
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += mult32x64(Yn2, a2);
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
Yn2 = Yn1;
|
||||
|
||||
/* The result is converted to 1.63, Yn1 variable is reused */
|
||||
Yn1 = acc << shift;
|
||||
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Store the output in the destination buffer in 1.31 format. */
|
||||
*pOut++ = acc_h;
|
||||
|
||||
/* Yn1 = acc << shift; */
|
||||
|
||||
/* Store the output in the destination buffer in 1.31 format. */
|
||||
/* *pOut++ = (q31_t) (acc >> (32 - shift)); */
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* The first stage output is given as input to the second stage. */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset to destination buffer working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* Store the updated state variables back into the pState array */
|
||||
*pState++ = (q63_t) Xn1;
|
||||
*pState++ = (q63_t) Xn2;
|
||||
*pState++ = Yn1;
|
||||
*pState++ = Yn2;
|
||||
|
||||
} while (--stage);
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1_32x64 group
|
||||
*/
|
|
@ -0,0 +1,412 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_f32.c
|
||||
* Description: Processing function for the floating-point Biquad cascade DirectFormI(DF1) filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BiquadCascadeDF1 Biquad Cascade IIR Filters Using Direct Form I Structure
|
||||
*
|
||||
* This set of functions implements arbitrary order recursive (IIR) filters.
|
||||
* The filters are implemented as a cascade of second order Biquad sections.
|
||||
* The functions support Q15, Q31 and floating-point data types.
|
||||
* Fast version of Q15 and Q31 also supported on CortexM4 and Cortex-M3.
|
||||
*
|
||||
* The functions operate on blocks of input and output data and each call to the function
|
||||
* processes <code>blockSize</code> samples through the filter.
|
||||
* <code>pSrc</code> points to the array of input data and
|
||||
* <code>pDst</code> points to the array of output data.
|
||||
* Both arrays contain <code>blockSize</code> values.
|
||||
*
|
||||
* \par Algorithm
|
||||
* Each Biquad stage implements a second order filter using the difference equation:
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
* </pre>
|
||||
* A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
|
||||
* \image html Biquad.gif "Single Biquad filter stage"
|
||||
* Coefficients <code>b0, b1 and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
|
||||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
|
||||
* Pay careful attention to the sign of the feedback coefficients.
|
||||
* Some design tools use the difference equation
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
|
||||
* </pre>
|
||||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
|
||||
*
|
||||
* \par
|
||||
* Higher order filters are realized as a cascade of second order sections.
|
||||
* <code>numStages</code> refers to the number of second order stages used.
|
||||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
|
||||
* \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
|
||||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
|
||||
*
|
||||
* \par
|
||||
* The <code>pState</code> points to state variables array.
|
||||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
|
||||
* The state variables are arranged in the <code>pState</code> array as:
|
||||
* <pre>
|
||||
* {x[n-1], x[n-2], y[n-1], y[n-2]}
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>4*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed, the coefficients are untouched.
|
||||
*
|
||||
* \par Instance Structure
|
||||
* The coefficients and state variables for a filter are stored together in an instance data structure.
|
||||
* A separate instance structure must be defined for each filter.
|
||||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
|
||||
* There are separate instance structure declarations for each of the 3 supported data types.
|
||||
*
|
||||
* \par Init Functions
|
||||
* There is also an associated initialization function for each data type.
|
||||
* The initialization function performs following operations:
|
||||
* - Sets the values of the internal structure fields.
|
||||
* - Zeros out the values in the state buffer.
|
||||
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
|
||||
* numStages, pCoeffs, pState. Also set all of the values in pState to zero.
|
||||
*
|
||||
* \par
|
||||
* Use of the initialization function is optional.
|
||||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
|
||||
* To place an instance structure into a const data section, the instance structure must be manually initialized.
|
||||
* Set the values in the state buffer to zeros before static initialization.
|
||||
* The code below statically initializes each of the 3 different data type filter instance structures
|
||||
* <pre>
|
||||
* arm_biquad_casd_df1_inst_f32 S1 = {numStages, pState, pCoeffs};
|
||||
* arm_biquad_casd_df1_inst_q15 S2 = {numStages, pState, pCoeffs, postShift};
|
||||
* arm_biquad_casd_df1_inst_q31 S3 = {numStages, pState, pCoeffs, postShift};
|
||||
* </pre>
|
||||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
|
||||
* <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied.
|
||||
*
|
||||
* \par Fixed-Point Behavior
|
||||
* Care must be taken when using the Q15 and Q31 versions of the Biquad Cascade filter functions.
|
||||
* Following issues must be considered:
|
||||
* - Scaling of coefficients
|
||||
* - Filter gain
|
||||
* - Overflow and saturation
|
||||
*
|
||||
* \par
|
||||
* <b>Scaling of coefficients: </b>
|
||||
* Filter coefficients are represented as fractional values and
|
||||
* coefficients are restricted to lie in the range <code>[-1 +1)</code>.
|
||||
* The fixed-point functions have an additional scaling parameter <code>postShift</code>
|
||||
* which allow the filter coefficients to exceed the range <code>[+1 -1)</code>.
|
||||
* At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
|
||||
* \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
|
||||
* This essentially scales the filter coefficients by <code>2^postShift</code>.
|
||||
* For example, to realize the coefficients
|
||||
* <pre>
|
||||
* {1.5, -0.8, 1.2, 1.6, -0.9}
|
||||
* </pre>
|
||||
* set the pCoeffs array to:
|
||||
* <pre>
|
||||
* {0.75, -0.4, 0.6, 0.8, -0.45}
|
||||
* </pre>
|
||||
* and set <code>postShift=1</code>
|
||||
*
|
||||
* \par
|
||||
* <b>Filter gain: </b>
|
||||
* The frequency response of a Biquad filter is a function of its coefficients.
|
||||
* It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
|
||||
* This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
|
||||
* To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
|
||||
*
|
||||
* \par
|
||||
* <b>Overflow and saturation: </b>
|
||||
* For Q15 and Q31 versions, it is described separately as part of the function specific documentation below.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @param[in] *S points to an instance of the floating-point Biquad cascade structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df1_f32(
|
||||
const arm_biquad_casd_df1_inst_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
float32_t *pIn = pSrc; /* source pointer */
|
||||
float32_t *pOut = pDst; /* destination pointer */
|
||||
float32_t *pState = S->pState; /* pState pointer */
|
||||
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
|
||||
float32_t acc; /* Simulates the accumulator */
|
||||
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
|
||||
float32_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */
|
||||
float32_t Xn; /* temporary input */
|
||||
uint32_t sample, stage = S->numStages; /* loop counters */
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/* Reading the pState values */
|
||||
Xn1 = pState[0];
|
||||
Xn2 = pState[1];
|
||||
Yn1 = pState[2];
|
||||
Yn2 = pState[3];
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously. */
|
||||
/* The variable acc hold output values that are being computed:
|
||||
*
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
|
||||
sample = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the first input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = Yn2;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
|
||||
/* Read the second input */
|
||||
Xn2 = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1);
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = Yn1;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
|
||||
/* Read the third input */
|
||||
Xn1 = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2);
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = Yn2;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
|
||||
/* Read the forth input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1);
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = Yn1;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
sample = blockSize & 0x3U;
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = acc;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
Yn2 = Yn1;
|
||||
Yn1 = acc;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the pState array */
|
||||
*pState++ = Xn1;
|
||||
*pState++ = Xn2;
|
||||
*pState++ = Yn1;
|
||||
*pState++ = Yn2;
|
||||
|
||||
/* The first stage goes from the input buffer to the output buffer. */
|
||||
/* Subsequent numStages occur in-place in the output buffer */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset the output pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/* Reading the pState values */
|
||||
Xn1 = pState[0];
|
||||
Xn2 = pState[1];
|
||||
Yn1 = pState[2];
|
||||
Yn2 = pState[3];
|
||||
|
||||
/* The variables acc holds the output value that is computed:
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
|
||||
sample = blockSize;
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = acc;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
Yn2 = Yn1;
|
||||
Yn1 = acc;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the pState array */
|
||||
*pState++ = Xn1;
|
||||
*pState++ = Xn2;
|
||||
*pState++ = Yn1;
|
||||
*pState++ = Yn2;
|
||||
|
||||
/* The first stage goes from the input buffer to the output buffer. */
|
||||
/* Subsequent numStages occur in-place in the output buffer */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset the output pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1 group
|
||||
*/
|
|
@ -0,0 +1,273 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_fast_q15.c
|
||||
* Description: Fast processing function for the Q15 Biquad cascade filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* This fast version uses a 32-bit accumulator with 2.30 format.
|
||||
* The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
||||
* Thus, if the accumulator result overflows it wraps around and distorts the result.
|
||||
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25).
|
||||
* The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits.
|
||||
*
|
||||
* \par
|
||||
* Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure.
|
||||
* Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df1_fast_q15(
|
||||
const arm_biquad_casd_df1_inst_q15 * S,
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q15_t *pIn = pSrc; /* Source pointer */
|
||||
q15_t *pOut = pDst; /* Destination pointer */
|
||||
q31_t in; /* Temporary variable to hold input value */
|
||||
q31_t out; /* Temporary variable to hold output value */
|
||||
q31_t b0; /* Temporary variable to hold bo value */
|
||||
q31_t b1, a1; /* Filter coefficients */
|
||||
q31_t state_in, state_out; /* Filter state variables */
|
||||
q31_t acc; /* Accumulator */
|
||||
int32_t shift = (int32_t) (15 - S->postShift); /* Post shift */
|
||||
q15_t *pState = S->pState; /* State pointer */
|
||||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
uint32_t sample, stage = S->numStages; /* Stage loop counter */
|
||||
|
||||
|
||||
|
||||
do
|
||||
{
|
||||
|
||||
/* Read the b0 and 0 coefficients using SIMD */
|
||||
b0 = *__SIMD32(pCoeffs)++;
|
||||
|
||||
/* Read the b1 and b2 coefficients using SIMD */
|
||||
b1 = *__SIMD32(pCoeffs)++;
|
||||
|
||||
/* Read the a1 and a2 coefficients using SIMD */
|
||||
a1 = *__SIMD32(pCoeffs)++;
|
||||
|
||||
/* Read the input state values from the state buffer: x[n-1], x[n-2] */
|
||||
state_in = *__SIMD32(pState)++;
|
||||
|
||||
/* Read the output state values from the state buffer: y[n-1], y[n-2] */
|
||||
state_out = *__SIMD32(pState)--;
|
||||
|
||||
/* Apply loop unrolling and compute 2 output values simultaneously. */
|
||||
/* The variable acc hold output values that are being computed:
|
||||
*
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
sample = blockSize >> 1U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
|
||||
** a second loop below computes the remaining 1 sample. */
|
||||
while (sample > 0U)
|
||||
{
|
||||
|
||||
/* Read the input */
|
||||
in = *__SIMD32(pIn)++;
|
||||
|
||||
/* out = b0 * x[n] + 0 * 0 */
|
||||
out = __SMUAD(b0, in);
|
||||
/* acc = b1 * x[n-1] + acc += b2 * x[n-2] + out */
|
||||
acc = __SMLAD(b1, state_in, out);
|
||||
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
|
||||
acc = __SMLAD(a1, state_out, acc);
|
||||
|
||||
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
|
||||
out = __SSAT((acc >> shift), 16);
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
|
||||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
state_in = __PKHBT(in, state_in, 16);
|
||||
state_out = __PKHBT(out, state_out, 16);
|
||||
|
||||
#else
|
||||
|
||||
state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
|
||||
state_out = __PKHBT(state_out >> 16, (out), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* out = b0 * x[n] + 0 * 0 */
|
||||
out = __SMUADX(b0, in);
|
||||
/* acc0 = b1 * x[n-1] , acc0 += b2 * x[n-2] + out */
|
||||
acc = __SMLAD(b1, state_in, out);
|
||||
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
|
||||
acc = __SMLAD(a1, state_out, acc);
|
||||
|
||||
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
|
||||
out = __SSAT((acc >> shift), 16);
|
||||
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
|
||||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
state_in = __PKHBT(in >> 16, state_in, 16);
|
||||
state_out = __PKHBT(out, state_out, 16);
|
||||
|
||||
#else
|
||||
|
||||
state_in = __PKHBT(state_in >> 16, in, 16);
|
||||
state_out = __PKHBT(state_out >> 16, out, 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
sample--;
|
||||
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
|
||||
if ((blockSize & 0x1U) != 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
in = *pIn++;
|
||||
|
||||
/* out = b0 * x[n] + 0 * 0 */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
out = __SMUAD(b0, in);
|
||||
|
||||
#else
|
||||
|
||||
out = __SMUADX(b0, in);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* acc = b1 * x[n-1], acc += b2 * x[n-2] + out */
|
||||
acc = __SMLAD(b1, state_in, out);
|
||||
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
|
||||
acc = __SMLAD(a1, state_out, acc);
|
||||
|
||||
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
|
||||
out = __SSAT((acc >> shift), 16);
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = (q15_t) out;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
|
||||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
state_in = __PKHBT(in, state_in, 16);
|
||||
state_out = __PKHBT(out, state_out, 16);
|
||||
|
||||
#else
|
||||
|
||||
state_in = __PKHBT(state_in >> 16, in, 16);
|
||||
state_out = __PKHBT(state_out >> 16, out, 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
}
|
||||
|
||||
/* The first stage goes from the input buffer to the output buffer. */
|
||||
/* Subsequent (numStages - 1) occur in-place in the output buffer */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset the output pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
*__SIMD32(pState)++ = state_in;
|
||||
*__SIMD32(pState)++ = state_out;
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1 group
|
||||
*/
|
|
@ -0,0 +1,292 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_fast_q31.c
|
||||
* Description: Processing function for the Q31 Fast Biquad cascade DirectFormI(DF1) filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
*
|
||||
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* This function is optimized for speed at the expense of fixed-point precision and overflow protection.
|
||||
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
|
||||
* These intermediate results are added to a 2.30 accumulator.
|
||||
* Finally, the accumulator is saturated and converted to a 1.31 result.
|
||||
* The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
|
||||
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function
|
||||
* arm_biquad_cascade_df1_init_q31() to initialize filter structure.
|
||||
*
|
||||
* \par
|
||||
* Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure.
|
||||
* Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure.
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df1_fast_q31(
|
||||
const arm_biquad_casd_df1_inst_q31 * S,
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q31_t acc = 0; /* accumulator */
|
||||
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
|
||||
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
|
||||
q31_t *pIn = pSrc; /* input pointer initialization */
|
||||
q31_t *pOut = pDst; /* output pointer initialization */
|
||||
q31_t *pState = S->pState; /* pState pointer initialization */
|
||||
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
|
||||
q31_t Xn; /* temporary input */
|
||||
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
|
||||
uint32_t sample, stage = S->numStages; /* loop counters */
|
||||
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/* Reading the state values */
|
||||
Xn1 = pState[0];
|
||||
Xn2 = pState[1];
|
||||
Yn1 = pState[2];
|
||||
Yn2 = pState[3];
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously. */
|
||||
/* The variables acc ... acc3 hold output values that are being computed:
|
||||
*
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
|
||||
sample = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
/*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/
|
||||
mult_32x32_keep32_R(acc, b1, Xn1);
|
||||
/* acc += b1 * x[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b0, Xn);
|
||||
/* acc += b[2] * x[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b2, Xn2);
|
||||
/* acc += a1 * y[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a1, Yn1);
|
||||
/* acc += a2 * y[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a2, Yn2);
|
||||
|
||||
/* The result is converted to 1.31 , Yn2 variable is reused */
|
||||
Yn2 = acc << shift;
|
||||
|
||||
/* Read the second input */
|
||||
Xn2 = *(pIn + 1U);
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut = Yn2;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
/*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/
|
||||
mult_32x32_keep32_R(acc, b0, Xn2);
|
||||
/* acc += b1 * x[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b1, Xn);
|
||||
/* acc += b[2] * x[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b2, Xn1);
|
||||
/* acc += a1 * y[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a1, Yn2);
|
||||
/* acc += a2 * y[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a2, Yn1);
|
||||
|
||||
/* The result is converted to 1.31, Yn1 variable is reused */
|
||||
Yn1 = acc << shift;
|
||||
|
||||
/* Read the third input */
|
||||
Xn1 = *(pIn + 2U);
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*(pOut + 1U) = Yn1;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
/*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/
|
||||
mult_32x32_keep32_R(acc, b0, Xn1);
|
||||
/* acc += b1 * x[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b1, Xn2);
|
||||
/* acc += b[2] * x[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b2, Xn);
|
||||
/* acc += a1 * y[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a1, Yn1);
|
||||
/* acc += a2 * y[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a2, Yn2);
|
||||
|
||||
/* The result is converted to 1.31, Yn2 variable is reused */
|
||||
Yn2 = acc << shift;
|
||||
|
||||
/* Read the forth input */
|
||||
Xn = *(pIn + 3U);
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*(pOut + 2U) = Yn2;
|
||||
pIn += 4U;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
/*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
|
||||
mult_32x32_keep32_R(acc, b0, Xn);
|
||||
/* acc += b1 * x[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b1, Xn1);
|
||||
/* acc += b[2] * x[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b2, Xn2);
|
||||
/* acc += a1 * y[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a1, Yn2);
|
||||
/* acc += a2 * y[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a2, Yn1);
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
Xn2 = Xn1;
|
||||
|
||||
/* The result is converted to 1.31, Yn1 variable is reused */
|
||||
Yn1 = acc << shift;
|
||||
|
||||
/* Xn1 = Xn */
|
||||
Xn1 = Xn;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*(pOut + 3U) = Yn1;
|
||||
pOut += 4U;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
sample = (blockSize & 0x3U);
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
/*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
|
||||
mult_32x32_keep32_R(acc, b0, Xn);
|
||||
/* acc += b1 * x[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b1, Xn1);
|
||||
/* acc += b[2] * x[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, b2, Xn2);
|
||||
/* acc += a1 * y[n-1] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a1, Yn1);
|
||||
/* acc += a2 * y[n-2] */
|
||||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
|
||||
multAcc_32x32_keep32_R(acc, a2, Yn2);
|
||||
|
||||
/* The result is converted to 1.31 */
|
||||
acc = acc << shift;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
Yn2 = Yn1;
|
||||
Yn1 = acc;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = acc;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* The first stage goes from the input buffer to the output buffer. */
|
||||
/* Subsequent stages occur in-place in the output buffer */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset to destination pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* Store the updated state variables back into the pState array */
|
||||
*pState++ = Xn1;
|
||||
*pState++ = Xn2;
|
||||
*pState++ = Yn1;
|
||||
*pState++ = Yn2;
|
||||
|
||||
} while (--stage);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1 group
|
||||
*/
|
|
@ -0,0 +1,97 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_init_f32.c
|
||||
* Description: Floating-point Biquad cascade DirectFormI(DF1) filter initialization function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
* @brief Initialization function for the floating-point Biquad cascade filter.
|
||||
* @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
|
||||
* @param[in] numStages number of 2nd order stages in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients array.
|
||||
* @param[in] *pState points to the state array.
|
||||
* @return none
|
||||
*
|
||||
*
|
||||
* <b>Coefficient and State Ordering:</b>
|
||||
*
|
||||
* \par
|
||||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
|
||||
* <pre>
|
||||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
|
||||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
|
||||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
|
||||
*
|
||||
* \par
|
||||
* The <code>pState</code> is a pointer to state array.
|
||||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
|
||||
* The state variables are arranged in the <code>pState</code> array as:
|
||||
* <pre>
|
||||
* {x[n-1], x[n-2], y[n-1], y[n-2]}
|
||||
* </pre>
|
||||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>4*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df1_init_f32(
|
||||
arm_biquad_casd_df1_inst_f32 * S,
|
||||
uint8_t numStages,
|
||||
float32_t * pCoeffs,
|
||||
float32_t * pState)
|
||||
{
|
||||
/* Assign filter stages */
|
||||
S->numStages = numStages;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and size is always 4 * numStages */
|
||||
memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(float32_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1 group
|
||||
*/
|
|
@ -0,0 +1,99 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_init_q15.c
|
||||
* Description: Q15 Biquad cascade DirectFormI(DF1) filter initialization function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
*
|
||||
* @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
|
||||
* @param[in] numStages number of 2nd order stages in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @param[in] postShift Shift to be applied to the accumulator result. Varies according to the coefficients format
|
||||
* @return none
|
||||
*
|
||||
* <b>Coefficient and State Ordering:</b>
|
||||
*
|
||||
* \par
|
||||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
|
||||
* <pre>
|
||||
* {b10, 0, b11, b12, a11, a12, b20, 0, b21, b22, a21, a22, ...}
|
||||
* </pre>
|
||||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
|
||||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
|
||||
* and so on. The <code>pCoeffs</code> array contains a total of <code>6*numStages</code> values.
|
||||
* The zero coefficient between <code>b1</code> and <code>b2</code> facilities use of 16-bit SIMD instructions on the Cortex-M4.
|
||||
*
|
||||
* \par
|
||||
* The state variables are stored in the array <code>pState</code>.
|
||||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
|
||||
* The state variables are arranged in the <code>pState</code> array as:
|
||||
* <pre>
|
||||
* {x[n-1], x[n-2], y[n-1], y[n-2]}
|
||||
* </pre>
|
||||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>4*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df1_init_q15(
|
||||
arm_biquad_casd_df1_inst_q15 * S,
|
||||
uint8_t numStages,
|
||||
q15_t * pCoeffs,
|
||||
q15_t * pState,
|
||||
int8_t postShift)
|
||||
{
|
||||
/* Assign filter stages */
|
||||
S->numStages = numStages;
|
||||
|
||||
/* Assign postShift to be applied to the output */
|
||||
S->postShift = postShift;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and size is always 4 * numStages */
|
||||
memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(q15_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1 group
|
||||
*/
|
|
@ -0,0 +1,98 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_init_q31.c
|
||||
* Description: Q31 Biquad cascade DirectFormI(DF1) filter initialization function
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
*
|
||||
* @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
|
||||
* @param[in] numStages number of 2nd order stages in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients buffer.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format
|
||||
* @return none
|
||||
*
|
||||
* <b>Coefficient and State Ordering:</b>
|
||||
*
|
||||
* \par
|
||||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
|
||||
* <pre>
|
||||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
|
||||
* </pre>
|
||||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
|
||||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
|
||||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
|
||||
*
|
||||
* \par
|
||||
* The <code>pState</code> points to state variables array.
|
||||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
|
||||
* The state variables are arranged in the <code>pState</code> array as:
|
||||
* <pre>
|
||||
* {x[n-1], x[n-2], y[n-1], y[n-2]}
|
||||
* </pre>
|
||||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>4*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df1_init_q31(
|
||||
arm_biquad_casd_df1_inst_q31 * S,
|
||||
uint8_t numStages,
|
||||
q31_t * pCoeffs,
|
||||
q31_t * pState,
|
||||
int8_t postShift)
|
||||
{
|
||||
/* Assign filter stages */
|
||||
S->numStages = numStages;
|
||||
|
||||
/* Assign postShift to be applied to the output */
|
||||
S->postShift = postShift;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and size is always 4 * numStages */
|
||||
memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(q31_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1 group
|
||||
*/
|
|
@ -0,0 +1,398 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_q15.c
|
||||
* Description: Processing function for the Q15 Biquad cascade DirectFormI(DF1) filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Processing function for the Q15 Biquad cascade filter.
|
||||
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the location where the output result is written.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function is implemented using a 64-bit internal accumulator.
|
||||
* Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
|
||||
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
||||
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
|
||||
* The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
|
||||
* Finally, the result is saturated to 1.15 format.
|
||||
*
|
||||
* \par
|
||||
* Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df1_q15(
|
||||
const arm_biquad_casd_df1_inst_q15 * S,
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q15_t *pIn = pSrc; /* Source pointer */
|
||||
q15_t *pOut = pDst; /* Destination pointer */
|
||||
q31_t in; /* Temporary variable to hold input value */
|
||||
q31_t out; /* Temporary variable to hold output value */
|
||||
q31_t b0; /* Temporary variable to hold bo value */
|
||||
q31_t b1, a1; /* Filter coefficients */
|
||||
q31_t state_in, state_out; /* Filter state variables */
|
||||
q31_t acc_l, acc_h;
|
||||
q63_t acc; /* Accumulator */
|
||||
int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
|
||||
q15_t *pState = S->pState; /* State pointer */
|
||||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
|
||||
int32_t uShift = (32 - lShift);
|
||||
|
||||
do
|
||||
{
|
||||
/* Read the b0 and 0 coefficients using SIMD */
|
||||
b0 = *__SIMD32(pCoeffs)++;
|
||||
|
||||
/* Read the b1 and b2 coefficients using SIMD */
|
||||
b1 = *__SIMD32(pCoeffs)++;
|
||||
|
||||
/* Read the a1 and a2 coefficients using SIMD */
|
||||
a1 = *__SIMD32(pCoeffs)++;
|
||||
|
||||
/* Read the input state values from the state buffer: x[n-1], x[n-2] */
|
||||
state_in = *__SIMD32(pState)++;
|
||||
|
||||
/* Read the output state values from the state buffer: y[n-1], y[n-2] */
|
||||
state_out = *__SIMD32(pState)--;
|
||||
|
||||
/* Apply loop unrolling and compute 2 output values simultaneously. */
|
||||
/* The variable acc hold output values that are being computed:
|
||||
*
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
sample = blockSize >> 1U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
|
||||
** a second loop below computes the remaining 1 sample. */
|
||||
while (sample > 0U)
|
||||
{
|
||||
|
||||
/* Read the input */
|
||||
in = *__SIMD32(pIn)++;
|
||||
|
||||
/* out = b0 * x[n] + 0 * 0 */
|
||||
out = __SMUAD(b0, in);
|
||||
|
||||
/* acc += b1 * x[n-1] + b2 * x[n-2] + out */
|
||||
acc = __SMLALD(b1, state_in, out);
|
||||
/* acc += a1 * y[n-1] + a2 * y[n-2] */
|
||||
acc = __SMLALD(a1, state_out, acc);
|
||||
|
||||
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
out = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
out = __SSAT(out, 16);
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
|
||||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
state_in = __PKHBT(in, state_in, 16);
|
||||
state_out = __PKHBT(out, state_out, 16);
|
||||
|
||||
#else
|
||||
|
||||
state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
|
||||
state_out = __PKHBT(state_out >> 16, (out), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* out = b0 * x[n] + 0 * 0 */
|
||||
out = __SMUADX(b0, in);
|
||||
/* acc += b1 * x[n-1] + b2 * x[n-2] + out */
|
||||
acc = __SMLALD(b1, state_in, out);
|
||||
/* acc += a1 * y[n-1] + a2 * y[n-2] */
|
||||
acc = __SMLALD(a1, state_out, acc);
|
||||
|
||||
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
out = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
out = __SSAT(out, 16);
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
|
||||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
state_in = __PKHBT(in >> 16, state_in, 16);
|
||||
state_out = __PKHBT(out, state_out, 16);
|
||||
|
||||
#else
|
||||
|
||||
state_in = __PKHBT(state_in >> 16, in, 16);
|
||||
state_out = __PKHBT(state_out >> 16, out, 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
sample--;
|
||||
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
|
||||
if ((blockSize & 0x1U) != 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
in = *pIn++;
|
||||
|
||||
/* out = b0 * x[n] + 0 * 0 */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
out = __SMUAD(b0, in);
|
||||
|
||||
#else
|
||||
|
||||
out = __SMUADX(b0, in);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* acc = b1 * x[n-1] + b2 * x[n-2] + out */
|
||||
acc = __SMLALD(b1, state_in, out);
|
||||
/* acc += a1 * y[n-1] + a2 * y[n-2] */
|
||||
acc = __SMLALD(a1, state_out, acc);
|
||||
|
||||
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
out = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
out = __SSAT(out, 16);
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = (q15_t) out;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
|
||||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
state_in = __PKHBT(in, state_in, 16);
|
||||
state_out = __PKHBT(out, state_out, 16);
|
||||
|
||||
#else
|
||||
|
||||
state_in = __PKHBT(state_in >> 16, in, 16);
|
||||
state_out = __PKHBT(state_out >> 16, out, 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
}
|
||||
|
||||
/* The first stage goes from the input wire to the output wire. */
|
||||
/* Subsequent numStages occur in-place in the output wire */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset the output pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
*__SIMD32(pState)++ = state_in;
|
||||
*__SIMD32(pState)++ = state_out;
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
q15_t *pIn = pSrc; /* Source pointer */
|
||||
q15_t *pOut = pDst; /* Destination pointer */
|
||||
q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
|
||||
q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
|
||||
q15_t Xn; /* temporary input */
|
||||
q63_t acc; /* Accumulator */
|
||||
int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
|
||||
q15_t *pState = S->pState; /* State pointer */
|
||||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
pCoeffs++; // skip the 0 coefficient
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/* Reading the state values */
|
||||
Xn1 = pState[0];
|
||||
Xn2 = pState[1];
|
||||
Yn1 = pState[2];
|
||||
Yn2 = pState[3];
|
||||
|
||||
/* The variables acc holds the output value that is computed:
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
|
||||
sample = blockSize;
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q31_t) b0 *Xn;
|
||||
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q31_t) b1 *Xn1;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q31_t) b2 *Xn2;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += (q31_t) a1 *Yn1;
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += (q31_t) a2 *Yn2;
|
||||
|
||||
/* The result is converted to 1.31 */
|
||||
acc = __SSAT((acc >> shift), 16);
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
Yn2 = Yn1;
|
||||
Yn1 = (q15_t) acc;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = (q15_t) acc;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* The first stage goes from the input buffer to the output buffer. */
|
||||
/* Subsequent stages occur in-place in the output buffer */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset to destination pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* Store the updated state variables back into the pState array */
|
||||
*pState++ = Xn1;
|
||||
*pState++ = Xn2;
|
||||
*pState++ = Yn1;
|
||||
*pState++ = Yn2;
|
||||
|
||||
} while (--stage);
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1 group
|
||||
*/
|
|
@ -0,0 +1,392 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df1_q31.c
|
||||
* Description: Processing function for the Q31 Biquad cascade filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF1
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Processing function for the Q31 Biquad cascade filter.
|
||||
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function is implemented using an internal 64-bit accumulator.
|
||||
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
||||
* Thus, if the accumulator result overflows it wraps around rather than clip.
|
||||
* In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
|
||||
* After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
|
||||
* 1.31 format by discarding the low 32 bits.
|
||||
*
|
||||
* \par
|
||||
* Refer to the function <code>arm_biquad_cascade_df1_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df1_q31(
|
||||
const arm_biquad_casd_df1_inst_q31 * S,
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q63_t acc; /* accumulator */
|
||||
uint32_t uShift = ((uint32_t) S->postShift + 1U);
|
||||
uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
|
||||
q31_t *pIn = pSrc; /* input pointer initialization */
|
||||
q31_t *pOut = pDst; /* output pointer initialization */
|
||||
q31_t *pState = S->pState; /* pState pointer initialization */
|
||||
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
|
||||
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
|
||||
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
|
||||
q31_t Xn; /* temporary input */
|
||||
uint32_t sample, stage = S->numStages; /* loop counters */
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
q31_t acc_l, acc_h; /* temporary output variables */
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/* Reading the state values */
|
||||
Xn1 = pState[0];
|
||||
Xn2 = pState[1];
|
||||
Yn1 = pState[2];
|
||||
Yn2 = pState[3];
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously. */
|
||||
/* The variable acc hold output values that are being computed:
|
||||
*
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
|
||||
sample = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) b0 *Xn;
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) b1 *Xn1;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) b2 *Xn2;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += (q63_t) a1 *Yn1;
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += (q63_t) a2 *Yn2;
|
||||
|
||||
/* The result is converted to 1.31 , Yn2 variable is reused */
|
||||
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = Yn2;
|
||||
|
||||
/* Read the second input */
|
||||
Xn2 = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) b0 *Xn2;
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) b1 *Xn;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) b2 *Xn1;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += (q63_t) a1 *Yn2;
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += (q63_t) a2 *Yn1;
|
||||
|
||||
|
||||
/* The result is converted to 1.31, Yn1 variable is reused */
|
||||
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = Yn1;
|
||||
|
||||
/* Read the third input */
|
||||
Xn1 = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) b0 *Xn1;
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) b1 *Xn2;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) b2 *Xn;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += (q63_t) a1 *Yn1;
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += (q63_t) a2 *Yn2;
|
||||
|
||||
/* The result is converted to 1.31, Yn2 variable is reused */
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = Yn2;
|
||||
|
||||
/* Read the forth input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) b0 *Xn;
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) b1 *Xn1;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) b2 *Xn2;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += (q63_t) a1 *Yn2;
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += (q63_t) a2 *Yn1;
|
||||
|
||||
/* The result is converted to 1.31, Yn1 variable is reused */
|
||||
/* Calc lower part of acc */
|
||||
acc_l = acc & 0xffffffff;
|
||||
|
||||
/* Calc upper part of acc */
|
||||
acc_h = (acc >> 32) & 0xffffffff;
|
||||
|
||||
/* Apply shift for lower part of acc and upper part of acc */
|
||||
Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = Yn1;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
sample = (blockSize & 0x3U);
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) b0 *Xn;
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) b1 *Xn1;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) b2 *Xn2;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += (q63_t) a1 *Yn1;
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += (q63_t) a2 *Yn2;
|
||||
|
||||
/* The result is converted to 1.31 */
|
||||
acc = acc >> lShift;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
Yn2 = Yn1;
|
||||
Yn1 = (q31_t) acc;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = (q31_t) acc;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* The first stage goes from the input buffer to the output buffer. */
|
||||
/* Subsequent stages occur in-place in the output buffer */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset to destination pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* Store the updated state variables back into the pState array */
|
||||
*pState++ = Xn1;
|
||||
*pState++ = Xn2;
|
||||
*pState++ = Yn1;
|
||||
*pState++ = Yn2;
|
||||
|
||||
} while (--stage);
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/* Reading the state values */
|
||||
Xn1 = pState[0];
|
||||
Xn2 = pState[1];
|
||||
Yn1 = pState[2];
|
||||
Yn2 = pState[3];
|
||||
|
||||
/* The variables acc holds the output value that is computed:
|
||||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
|
||||
*/
|
||||
|
||||
sample = blockSize;
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn = *pIn++;
|
||||
|
||||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
|
||||
/* acc = b0 * x[n] */
|
||||
acc = (q63_t) b0 *Xn;
|
||||
|
||||
/* acc += b1 * x[n-1] */
|
||||
acc += (q63_t) b1 *Xn1;
|
||||
/* acc += b[2] * x[n-2] */
|
||||
acc += (q63_t) b2 *Xn2;
|
||||
/* acc += a1 * y[n-1] */
|
||||
acc += (q63_t) a1 *Yn1;
|
||||
/* acc += a2 * y[n-2] */
|
||||
acc += (q63_t) a2 *Yn2;
|
||||
|
||||
/* The result is converted to 1.31 */
|
||||
acc = acc >> lShift;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* The states should be updated as: */
|
||||
/* Xn2 = Xn1 */
|
||||
/* Xn1 = Xn */
|
||||
/* Yn2 = Yn1 */
|
||||
/* Yn1 = acc */
|
||||
Xn2 = Xn1;
|
||||
Xn1 = Xn;
|
||||
Yn2 = Yn1;
|
||||
Yn1 = (q31_t) acc;
|
||||
|
||||
/* Store the output in the destination buffer. */
|
||||
*pOut++ = (q31_t) acc;
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* The first stage goes from the input buffer to the output buffer. */
|
||||
/* Subsequent stages occur in-place in the output buffer */
|
||||
pIn = pDst;
|
||||
|
||||
/* Reset to destination pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* Store the updated state variables back into the pState array */
|
||||
*pState++ = Xn1;
|
||||
*pState++ = Xn2;
|
||||
*pState++ = Yn1;
|
||||
*pState++ = Yn2;
|
||||
|
||||
} while (--stage);
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF1 group
|
||||
*/
|
|
@ -0,0 +1,590 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df2T_f32.c
|
||||
* Description: Processing function for floating-point transposed direct form II Biquad cascade filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
|
||||
*
|
||||
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.
|
||||
* The filters are implemented as a cascade of second order Biquad sections.
|
||||
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.
|
||||
* Only floating-point data is supported.
|
||||
*
|
||||
* This function operate on blocks of input and output data and each call to the function
|
||||
* processes <code>blockSize</code> samples through the filter.
|
||||
* <code>pSrc</code> points to the array of input data and
|
||||
* <code>pDst</code> points to the array of output data.
|
||||
* Both arrays contain <code>blockSize</code> values.
|
||||
*
|
||||
* \par Algorithm
|
||||
* Each Biquad stage implements a second order filter using the difference equation:
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + d1
|
||||
* d1 = b1 * x[n] + a1 * y[n] + d2
|
||||
* d2 = b2 * x[n] + a2 * y[n]
|
||||
* </pre>
|
||||
* where d1 and d2 represent the two state values.
|
||||
*
|
||||
* \par
|
||||
* A Biquad filter using a transposed Direct Form II structure is shown below.
|
||||
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"
|
||||
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
|
||||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
|
||||
* Pay careful attention to the sign of the feedback coefficients.
|
||||
* Some design tools flip the sign of the feedback coefficients:
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + d1;
|
||||
* d1 = b1 * x[n] - a1 * y[n] + d2;
|
||||
* d2 = b2 * x[n] - a2 * y[n];
|
||||
* </pre>
|
||||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
|
||||
*
|
||||
* \par
|
||||
* Higher order filters are realized as a cascade of second order sections.
|
||||
* <code>numStages</code> refers to the number of second order stages used.
|
||||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
|
||||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the
|
||||
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
|
||||
*
|
||||
* \par
|
||||
* <code>pState</code> points to the state variable array.
|
||||
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.
|
||||
* The state variables are arranged in the <code>pState</code> array as:
|
||||
* <pre>
|
||||
* {d11, d12, d21, d22, ...}
|
||||
* </pre>
|
||||
* where <code>d1x</code> refers to the state variables for the first Biquad and
|
||||
* <code>d2x</code> refers to the state variables for the second Biquad.
|
||||
* The state array has a total length of <code>2*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*
|
||||
* \par
|
||||
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.
|
||||
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.
|
||||
* That is why the Direct Form I structure supports Q15 and Q31 data types.
|
||||
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.
|
||||
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.
|
||||
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.
|
||||
*
|
||||
* \par Instance Structure
|
||||
* The coefficients and state variables for a filter are stored together in an instance data structure.
|
||||
* A separate instance structure must be defined for each filter.
|
||||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
|
||||
*
|
||||
* \par Init Functions
|
||||
* There is also an associated initialization function.
|
||||
* The initialization function performs following operations:
|
||||
* - Sets the values of the internal structure fields.
|
||||
* - Zeros out the values in the state buffer.
|
||||
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
|
||||
* numStages, pCoeffs, pState. Also set all of the values in pState to zero.
|
||||
*
|
||||
* \par
|
||||
* Use of the initialization function is optional.
|
||||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
|
||||
* To place an instance structure into a const data section, the instance structure must be manually initialized.
|
||||
* Set the values in the state buffer to zeros before static initialization.
|
||||
* For example, to statically initialize the instance structure use
|
||||
* <pre>
|
||||
* arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs};
|
||||
* </pre>
|
||||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.
|
||||
* <code>pCoeffs</code> is the address of the coefficient buffer;
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF2T
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
|
||||
* @param[in] *S points to an instance of the filter data structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data
|
||||
* @param[in] blockSize number of samples to process.
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
|
||||
LOW_OPTIMIZATION_ENTER
|
||||
void arm_biquad_cascade_df2T_f32(
|
||||
const arm_biquad_cascade_df2T_instance_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
|
||||
float32_t *pIn = pSrc; /* source pointer */
|
||||
float32_t *pOut = pDst; /* destination pointer */
|
||||
float32_t *pState = S->pState; /* State pointer */
|
||||
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
|
||||
float32_t acc1; /* accumulator */
|
||||
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
|
||||
float32_t Xn1; /* temporary input */
|
||||
float32_t d1, d2; /* state variables */
|
||||
uint32_t sample, stage = S->numStages; /* loop counters */
|
||||
|
||||
#if defined(ARM_MATH_CM7)
|
||||
|
||||
float32_t Xn2, Xn3, Xn4, Xn5, Xn6, Xn7, Xn8; /* Input State variables */
|
||||
float32_t Xn9, Xn10, Xn11, Xn12, Xn13, Xn14, Xn15, Xn16;
|
||||
float32_t acc2, acc3, acc4, acc5, acc6, acc7; /* Simulates the accumulator */
|
||||
float32_t acc8, acc9, acc10, acc11, acc12, acc13, acc14, acc15, acc16;
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = pCoeffs[0];
|
||||
b1 = pCoeffs[1];
|
||||
b2 = pCoeffs[2];
|
||||
a1 = pCoeffs[3];
|
||||
/* Apply loop unrolling and compute 16 output values simultaneously. */
|
||||
sample = blockSize >> 4U;
|
||||
a2 = pCoeffs[4];
|
||||
|
||||
/*Reading the state values */
|
||||
d1 = pState[0];
|
||||
d2 = pState[1];
|
||||
|
||||
pCoeffs += 5U;
|
||||
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 16 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 15 samples. */
|
||||
while (sample > 0U) {
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
|
||||
/* Read the first 2 inputs. 2 cycles */
|
||||
Xn1 = pIn[0 ];
|
||||
Xn2 = pIn[1 ];
|
||||
|
||||
/* Sample 1. 5 cycles */
|
||||
Xn3 = pIn[2 ];
|
||||
acc1 = b0 * Xn1 + d1;
|
||||
|
||||
Xn4 = pIn[3 ];
|
||||
d1 = b1 * Xn1 + d2;
|
||||
|
||||
Xn5 = pIn[4 ];
|
||||
d2 = b2 * Xn1;
|
||||
|
||||
Xn6 = pIn[5 ];
|
||||
d1 += a1 * acc1;
|
||||
|
||||
Xn7 = pIn[6 ];
|
||||
d2 += a2 * acc1;
|
||||
|
||||
/* Sample 2. 5 cycles */
|
||||
Xn8 = pIn[7 ];
|
||||
acc2 = b0 * Xn2 + d1;
|
||||
|
||||
Xn9 = pIn[8 ];
|
||||
d1 = b1 * Xn2 + d2;
|
||||
|
||||
Xn10 = pIn[9 ];
|
||||
d2 = b2 * Xn2;
|
||||
|
||||
Xn11 = pIn[10];
|
||||
d1 += a1 * acc2;
|
||||
|
||||
Xn12 = pIn[11];
|
||||
d2 += a2 * acc2;
|
||||
|
||||
/* Sample 3. 5 cycles */
|
||||
Xn13 = pIn[12];
|
||||
acc3 = b0 * Xn3 + d1;
|
||||
|
||||
Xn14 = pIn[13];
|
||||
d1 = b1 * Xn3 + d2;
|
||||
|
||||
Xn15 = pIn[14];
|
||||
d2 = b2 * Xn3;
|
||||
|
||||
Xn16 = pIn[15];
|
||||
d1 += a1 * acc3;
|
||||
|
||||
pIn += 16;
|
||||
d2 += a2 * acc3;
|
||||
|
||||
/* Sample 4. 5 cycles */
|
||||
acc4 = b0 * Xn4 + d1;
|
||||
d1 = b1 * Xn4 + d2;
|
||||
d2 = b2 * Xn4;
|
||||
d1 += a1 * acc4;
|
||||
d2 += a2 * acc4;
|
||||
|
||||
/* Sample 5. 5 cycles */
|
||||
acc5 = b0 * Xn5 + d1;
|
||||
d1 = b1 * Xn5 + d2;
|
||||
d2 = b2 * Xn5;
|
||||
d1 += a1 * acc5;
|
||||
d2 += a2 * acc5;
|
||||
|
||||
/* Sample 6. 5 cycles */
|
||||
acc6 = b0 * Xn6 + d1;
|
||||
d1 = b1 * Xn6 + d2;
|
||||
d2 = b2 * Xn6;
|
||||
d1 += a1 * acc6;
|
||||
d2 += a2 * acc6;
|
||||
|
||||
/* Sample 7. 5 cycles */
|
||||
acc7 = b0 * Xn7 + d1;
|
||||
d1 = b1 * Xn7 + d2;
|
||||
d2 = b2 * Xn7;
|
||||
d1 += a1 * acc7;
|
||||
d2 += a2 * acc7;
|
||||
|
||||
/* Sample 8. 5 cycles */
|
||||
acc8 = b0 * Xn8 + d1;
|
||||
d1 = b1 * Xn8 + d2;
|
||||
d2 = b2 * Xn8;
|
||||
d1 += a1 * acc8;
|
||||
d2 += a2 * acc8;
|
||||
|
||||
/* Sample 9. 5 cycles */
|
||||
acc9 = b0 * Xn9 + d1;
|
||||
d1 = b1 * Xn9 + d2;
|
||||
d2 = b2 * Xn9;
|
||||
d1 += a1 * acc9;
|
||||
d2 += a2 * acc9;
|
||||
|
||||
/* Sample 10. 5 cycles */
|
||||
acc10 = b0 * Xn10 + d1;
|
||||
d1 = b1 * Xn10 + d2;
|
||||
d2 = b2 * Xn10;
|
||||
d1 += a1 * acc10;
|
||||
d2 += a2 * acc10;
|
||||
|
||||
/* Sample 11. 5 cycles */
|
||||
acc11 = b0 * Xn11 + d1;
|
||||
d1 = b1 * Xn11 + d2;
|
||||
d2 = b2 * Xn11;
|
||||
d1 += a1 * acc11;
|
||||
d2 += a2 * acc11;
|
||||
|
||||
/* Sample 12. 5 cycles */
|
||||
acc12 = b0 * Xn12 + d1;
|
||||
d1 = b1 * Xn12 + d2;
|
||||
d2 = b2 * Xn12;
|
||||
d1 += a1 * acc12;
|
||||
d2 += a2 * acc12;
|
||||
|
||||
/* Sample 13. 5 cycles */
|
||||
acc13 = b0 * Xn13 + d1;
|
||||
d1 = b1 * Xn13 + d2;
|
||||
d2 = b2 * Xn13;
|
||||
|
||||
pOut[0 ] = acc1 ;
|
||||
d1 += a1 * acc13;
|
||||
|
||||
pOut[1 ] = acc2 ;
|
||||
d2 += a2 * acc13;
|
||||
|
||||
/* Sample 14. 5 cycles */
|
||||
pOut[2 ] = acc3 ;
|
||||
acc14 = b0 * Xn14 + d1;
|
||||
|
||||
pOut[3 ] = acc4 ;
|
||||
d1 = b1 * Xn14 + d2;
|
||||
|
||||
pOut[4 ] = acc5 ;
|
||||
d2 = b2 * Xn14;
|
||||
|
||||
pOut[5 ] = acc6 ;
|
||||
d1 += a1 * acc14;
|
||||
|
||||
pOut[6 ] = acc7 ;
|
||||
d2 += a2 * acc14;
|
||||
|
||||
/* Sample 15. 5 cycles */
|
||||
pOut[7 ] = acc8 ;
|
||||
pOut[8 ] = acc9 ;
|
||||
acc15 = b0 * Xn15 + d1;
|
||||
|
||||
pOut[9 ] = acc10;
|
||||
d1 = b1 * Xn15 + d2;
|
||||
|
||||
pOut[10] = acc11;
|
||||
d2 = b2 * Xn15;
|
||||
|
||||
pOut[11] = acc12;
|
||||
d1 += a1 * acc15;
|
||||
|
||||
pOut[12] = acc13;
|
||||
d2 += a2 * acc15;
|
||||
|
||||
/* Sample 16. 5 cycles */
|
||||
pOut[13] = acc14;
|
||||
acc16 = b0 * Xn16 + d1;
|
||||
|
||||
pOut[14] = acc15;
|
||||
d1 = b1 * Xn16 + d2;
|
||||
|
||||
pOut[15] = acc16;
|
||||
d2 = b2 * Xn16;
|
||||
|
||||
sample--;
|
||||
d1 += a1 * acc16;
|
||||
|
||||
pOut += 16;
|
||||
d2 += a2 * acc16;
|
||||
}
|
||||
|
||||
sample = blockSize & 0xFu;
|
||||
while (sample > 0U) {
|
||||
Xn1 = *pIn;
|
||||
acc1 = b0 * Xn1 + d1;
|
||||
|
||||
pIn++;
|
||||
d1 = b1 * Xn1 + d2;
|
||||
|
||||
*pOut = acc1;
|
||||
d2 = b2 * Xn1;
|
||||
|
||||
pOut++;
|
||||
d1 += a1 * acc1;
|
||||
|
||||
sample--;
|
||||
d2 += a2 * acc1;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
pState[0] = d1;
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
|
||||
pState[1] = d2;
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
pState += 2U;
|
||||
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#elif defined(ARM_MATH_CM0_FAMILY)
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/*Reading the state values */
|
||||
d1 = pState[0];
|
||||
d2 = pState[1];
|
||||
|
||||
|
||||
sample = blockSize;
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn1 = *pIn++;
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
acc1 = (b0 * Xn1) + d1;
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = acc1;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
d1 = ((b1 * Xn1) + (a1 * acc1)) + d2;
|
||||
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
d2 = (b2 * Xn1) + (a2 * acc1);
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
*pState++ = d1;
|
||||
*pState++ = d2;
|
||||
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#else
|
||||
|
||||
float32_t Xn2, Xn3, Xn4; /* Input State variables */
|
||||
float32_t acc2, acc3, acc4; /* accumulator */
|
||||
|
||||
|
||||
float32_t p0, p1, p2, p3, p4, A1;
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
|
||||
/*Reading the state values */
|
||||
d1 = pState[0];
|
||||
d2 = pState[1];
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously. */
|
||||
sample = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (sample > 0U) {
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
|
||||
/* Read the four inputs */
|
||||
Xn1 = pIn[0];
|
||||
Xn2 = pIn[1];
|
||||
Xn3 = pIn[2];
|
||||
Xn4 = pIn[3];
|
||||
pIn += 4;
|
||||
|
||||
p0 = b0 * Xn1;
|
||||
p1 = b1 * Xn1;
|
||||
acc1 = p0 + d1;
|
||||
p0 = b0 * Xn2;
|
||||
p3 = a1 * acc1;
|
||||
p2 = b2 * Xn1;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc1;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
p1 = b1 * Xn2;
|
||||
acc2 = p0 + d1;
|
||||
p0 = b0 * Xn3;
|
||||
p3 = a1 * acc2;
|
||||
p2 = b2 * Xn2;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc2;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
p1 = b1 * Xn3;
|
||||
acc3 = p0 + d1;
|
||||
p0 = b0 * Xn4;
|
||||
p3 = a1 * acc3;
|
||||
p2 = b2 * Xn3;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc3;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
acc4 = p0 + d1;
|
||||
p1 = b1 * Xn4;
|
||||
p3 = a1 * acc4;
|
||||
p2 = b2 * Xn4;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc4;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
pOut[0] = acc1;
|
||||
pOut[1] = acc2;
|
||||
pOut[2] = acc3;
|
||||
pOut[3] = acc4;
|
||||
pOut += 4;
|
||||
|
||||
sample--;
|
||||
}
|
||||
|
||||
sample = blockSize & 0x3U;
|
||||
while (sample > 0U) {
|
||||
Xn1 = *pIn++;
|
||||
|
||||
p0 = b0 * Xn1;
|
||||
p1 = b1 * Xn1;
|
||||
acc1 = p0 + d1;
|
||||
p3 = a1 * acc1;
|
||||
p2 = b2 * Xn1;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc1;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
*pOut++ = acc1;
|
||||
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
*pState++ = d1;
|
||||
*pState++ = d2;
|
||||
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
LOW_OPTIMIZATION_EXIT
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF2T group
|
||||
*/
|
|
@ -0,0 +1,590 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df2T_f64.c
|
||||
* Description: Processing function for floating-point transposed direct form II Biquad cascade filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
|
||||
*
|
||||
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.
|
||||
* The filters are implemented as a cascade of second order Biquad sections.
|
||||
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.
|
||||
* Only floating-point data is supported.
|
||||
*
|
||||
* This function operate on blocks of input and output data and each call to the function
|
||||
* processes <code>blockSize</code> samples through the filter.
|
||||
* <code>pSrc</code> points to the array of input data and
|
||||
* <code>pDst</code> points to the array of output data.
|
||||
* Both arrays contain <code>blockSize</code> values.
|
||||
*
|
||||
* \par Algorithm
|
||||
* Each Biquad stage implements a second order filter using the difference equation:
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + d1
|
||||
* d1 = b1 * x[n] + a1 * y[n] + d2
|
||||
* d2 = b2 * x[n] + a2 * y[n]
|
||||
* </pre>
|
||||
* where d1 and d2 represent the two state values.
|
||||
*
|
||||
* \par
|
||||
* A Biquad filter using a transposed Direct Form II structure is shown below.
|
||||
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"
|
||||
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
|
||||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
|
||||
* Pay careful attention to the sign of the feedback coefficients.
|
||||
* Some design tools flip the sign of the feedback coefficients:
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + d1;
|
||||
* d1 = b1 * x[n] - a1 * y[n] + d2;
|
||||
* d2 = b2 * x[n] - a2 * y[n];
|
||||
* </pre>
|
||||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
|
||||
*
|
||||
* \par
|
||||
* Higher order filters are realized as a cascade of second order sections.
|
||||
* <code>numStages</code> refers to the number of second order stages used.
|
||||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
|
||||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the
|
||||
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
|
||||
*
|
||||
* \par
|
||||
* <code>pState</code> points to the state variable array.
|
||||
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.
|
||||
* The state variables are arranged in the <code>pState</code> array as:
|
||||
* <pre>
|
||||
* {d11, d12, d21, d22, ...}
|
||||
* </pre>
|
||||
* where <code>d1x</code> refers to the state variables for the first Biquad and
|
||||
* <code>d2x</code> refers to the state variables for the second Biquad.
|
||||
* The state array has a total length of <code>2*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*
|
||||
* \par
|
||||
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.
|
||||
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.
|
||||
* That is why the Direct Form I structure supports Q15 and Q31 data types.
|
||||
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.
|
||||
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.
|
||||
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.
|
||||
*
|
||||
* \par Instance Structure
|
||||
* The coefficients and state variables for a filter are stored together in an instance data structure.
|
||||
* A separate instance structure must be defined for each filter.
|
||||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
|
||||
*
|
||||
* \par Init Functions
|
||||
* There is also an associated initialization function.
|
||||
* The initialization function performs following operations:
|
||||
* - Sets the values of the internal structure fields.
|
||||
* - Zeros out the values in the state buffer.
|
||||
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
|
||||
* numStages, pCoeffs, pState. Also set all of the values in pState to zero.
|
||||
*
|
||||
* \par
|
||||
* Use of the initialization function is optional.
|
||||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
|
||||
* To place an instance structure into a const data section, the instance structure must be manually initialized.
|
||||
* Set the values in the state buffer to zeros before static initialization.
|
||||
* For example, to statically initialize the instance structure use
|
||||
* <pre>
|
||||
* arm_biquad_cascade_df2T_instance_f64 S1 = {numStages, pState, pCoeffs};
|
||||
* </pre>
|
||||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.
|
||||
* <code>pCoeffs</code> is the address of the coefficient buffer;
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF2T
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
|
||||
* @param[in] *S points to an instance of the filter data structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data
|
||||
* @param[in] blockSize number of samples to process.
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
|
||||
LOW_OPTIMIZATION_ENTER
|
||||
void arm_biquad_cascade_df2T_f64(
|
||||
const arm_biquad_cascade_df2T_instance_f64 * S,
|
||||
float64_t * pSrc,
|
||||
float64_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
|
||||
float64_t *pIn = pSrc; /* source pointer */
|
||||
float64_t *pOut = pDst; /* destination pointer */
|
||||
float64_t *pState = S->pState; /* State pointer */
|
||||
float64_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
|
||||
float64_t acc1; /* accumulator */
|
||||
float64_t b0, b1, b2, a1, a2; /* Filter coefficients */
|
||||
float64_t Xn1; /* temporary input */
|
||||
float64_t d1, d2; /* state variables */
|
||||
uint32_t sample, stage = S->numStages; /* loop counters */
|
||||
|
||||
#if defined(ARM_MATH_CM7)
|
||||
|
||||
float64_t Xn2, Xn3, Xn4, Xn5, Xn6, Xn7, Xn8; /* Input State variables */
|
||||
float64_t Xn9, Xn10, Xn11, Xn12, Xn13, Xn14, Xn15, Xn16;
|
||||
float64_t acc2, acc3, acc4, acc5, acc6, acc7; /* Simulates the accumulator */
|
||||
float64_t acc8, acc9, acc10, acc11, acc12, acc13, acc14, acc15, acc16;
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = pCoeffs[0];
|
||||
b1 = pCoeffs[1];
|
||||
b2 = pCoeffs[2];
|
||||
a1 = pCoeffs[3];
|
||||
/* Apply loop unrolling and compute 16 output values simultaneously. */
|
||||
sample = blockSize >> 4U;
|
||||
a2 = pCoeffs[4];
|
||||
|
||||
/*Reading the state values */
|
||||
d1 = pState[0];
|
||||
d2 = pState[1];
|
||||
|
||||
pCoeffs += 5U;
|
||||
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 16 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 15 samples. */
|
||||
while (sample > 0U) {
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
|
||||
/* Read the first 2 inputs. 2 cycles */
|
||||
Xn1 = pIn[0 ];
|
||||
Xn2 = pIn[1 ];
|
||||
|
||||
/* Sample 1. 5 cycles */
|
||||
Xn3 = pIn[2 ];
|
||||
acc1 = b0 * Xn1 + d1;
|
||||
|
||||
Xn4 = pIn[3 ];
|
||||
d1 = b1 * Xn1 + d2;
|
||||
|
||||
Xn5 = pIn[4 ];
|
||||
d2 = b2 * Xn1;
|
||||
|
||||
Xn6 = pIn[5 ];
|
||||
d1 += a1 * acc1;
|
||||
|
||||
Xn7 = pIn[6 ];
|
||||
d2 += a2 * acc1;
|
||||
|
||||
/* Sample 2. 5 cycles */
|
||||
Xn8 = pIn[7 ];
|
||||
acc2 = b0 * Xn2 + d1;
|
||||
|
||||
Xn9 = pIn[8 ];
|
||||
d1 = b1 * Xn2 + d2;
|
||||
|
||||
Xn10 = pIn[9 ];
|
||||
d2 = b2 * Xn2;
|
||||
|
||||
Xn11 = pIn[10];
|
||||
d1 += a1 * acc2;
|
||||
|
||||
Xn12 = pIn[11];
|
||||
d2 += a2 * acc2;
|
||||
|
||||
/* Sample 3. 5 cycles */
|
||||
Xn13 = pIn[12];
|
||||
acc3 = b0 * Xn3 + d1;
|
||||
|
||||
Xn14 = pIn[13];
|
||||
d1 = b1 * Xn3 + d2;
|
||||
|
||||
Xn15 = pIn[14];
|
||||
d2 = b2 * Xn3;
|
||||
|
||||
Xn16 = pIn[15];
|
||||
d1 += a1 * acc3;
|
||||
|
||||
pIn += 16;
|
||||
d2 += a2 * acc3;
|
||||
|
||||
/* Sample 4. 5 cycles */
|
||||
acc4 = b0 * Xn4 + d1;
|
||||
d1 = b1 * Xn4 + d2;
|
||||
d2 = b2 * Xn4;
|
||||
d1 += a1 * acc4;
|
||||
d2 += a2 * acc4;
|
||||
|
||||
/* Sample 5. 5 cycles */
|
||||
acc5 = b0 * Xn5 + d1;
|
||||
d1 = b1 * Xn5 + d2;
|
||||
d2 = b2 * Xn5;
|
||||
d1 += a1 * acc5;
|
||||
d2 += a2 * acc5;
|
||||
|
||||
/* Sample 6. 5 cycles */
|
||||
acc6 = b0 * Xn6 + d1;
|
||||
d1 = b1 * Xn6 + d2;
|
||||
d2 = b2 * Xn6;
|
||||
d1 += a1 * acc6;
|
||||
d2 += a2 * acc6;
|
||||
|
||||
/* Sample 7. 5 cycles */
|
||||
acc7 = b0 * Xn7 + d1;
|
||||
d1 = b1 * Xn7 + d2;
|
||||
d2 = b2 * Xn7;
|
||||
d1 += a1 * acc7;
|
||||
d2 += a2 * acc7;
|
||||
|
||||
/* Sample 8. 5 cycles */
|
||||
acc8 = b0 * Xn8 + d1;
|
||||
d1 = b1 * Xn8 + d2;
|
||||
d2 = b2 * Xn8;
|
||||
d1 += a1 * acc8;
|
||||
d2 += a2 * acc8;
|
||||
|
||||
/* Sample 9. 5 cycles */
|
||||
acc9 = b0 * Xn9 + d1;
|
||||
d1 = b1 * Xn9 + d2;
|
||||
d2 = b2 * Xn9;
|
||||
d1 += a1 * acc9;
|
||||
d2 += a2 * acc9;
|
||||
|
||||
/* Sample 10. 5 cycles */
|
||||
acc10 = b0 * Xn10 + d1;
|
||||
d1 = b1 * Xn10 + d2;
|
||||
d2 = b2 * Xn10;
|
||||
d1 += a1 * acc10;
|
||||
d2 += a2 * acc10;
|
||||
|
||||
/* Sample 11. 5 cycles */
|
||||
acc11 = b0 * Xn11 + d1;
|
||||
d1 = b1 * Xn11 + d2;
|
||||
d2 = b2 * Xn11;
|
||||
d1 += a1 * acc11;
|
||||
d2 += a2 * acc11;
|
||||
|
||||
/* Sample 12. 5 cycles */
|
||||
acc12 = b0 * Xn12 + d1;
|
||||
d1 = b1 * Xn12 + d2;
|
||||
d2 = b2 * Xn12;
|
||||
d1 += a1 * acc12;
|
||||
d2 += a2 * acc12;
|
||||
|
||||
/* Sample 13. 5 cycles */
|
||||
acc13 = b0 * Xn13 + d1;
|
||||
d1 = b1 * Xn13 + d2;
|
||||
d2 = b2 * Xn13;
|
||||
|
||||
pOut[0 ] = acc1 ;
|
||||
d1 += a1 * acc13;
|
||||
|
||||
pOut[1 ] = acc2 ;
|
||||
d2 += a2 * acc13;
|
||||
|
||||
/* Sample 14. 5 cycles */
|
||||
pOut[2 ] = acc3 ;
|
||||
acc14 = b0 * Xn14 + d1;
|
||||
|
||||
pOut[3 ] = acc4 ;
|
||||
d1 = b1 * Xn14 + d2;
|
||||
|
||||
pOut[4 ] = acc5 ;
|
||||
d2 = b2 * Xn14;
|
||||
|
||||
pOut[5 ] = acc6 ;
|
||||
d1 += a1 * acc14;
|
||||
|
||||
pOut[6 ] = acc7 ;
|
||||
d2 += a2 * acc14;
|
||||
|
||||
/* Sample 15. 5 cycles */
|
||||
pOut[7 ] = acc8 ;
|
||||
pOut[8 ] = acc9 ;
|
||||
acc15 = b0 * Xn15 + d1;
|
||||
|
||||
pOut[9 ] = acc10;
|
||||
d1 = b1 * Xn15 + d2;
|
||||
|
||||
pOut[10] = acc11;
|
||||
d2 = b2 * Xn15;
|
||||
|
||||
pOut[11] = acc12;
|
||||
d1 += a1 * acc15;
|
||||
|
||||
pOut[12] = acc13;
|
||||
d2 += a2 * acc15;
|
||||
|
||||
/* Sample 16. 5 cycles */
|
||||
pOut[13] = acc14;
|
||||
acc16 = b0 * Xn16 + d1;
|
||||
|
||||
pOut[14] = acc15;
|
||||
d1 = b1 * Xn16 + d2;
|
||||
|
||||
pOut[15] = acc16;
|
||||
d2 = b2 * Xn16;
|
||||
|
||||
sample--;
|
||||
d1 += a1 * acc16;
|
||||
|
||||
pOut += 16;
|
||||
d2 += a2 * acc16;
|
||||
}
|
||||
|
||||
sample = blockSize & 0xFu;
|
||||
while (sample > 0U) {
|
||||
Xn1 = *pIn;
|
||||
acc1 = b0 * Xn1 + d1;
|
||||
|
||||
pIn++;
|
||||
d1 = b1 * Xn1 + d2;
|
||||
|
||||
*pOut = acc1;
|
||||
d2 = b2 * Xn1;
|
||||
|
||||
pOut++;
|
||||
d1 += a1 * acc1;
|
||||
|
||||
sample--;
|
||||
d2 += a2 * acc1;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
pState[0] = d1;
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
|
||||
pState[1] = d2;
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
pState += 2U;
|
||||
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#elif defined(ARM_MATH_CM0_FAMILY)
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/*Reading the state values */
|
||||
d1 = pState[0];
|
||||
d2 = pState[1];
|
||||
|
||||
|
||||
sample = blockSize;
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn1 = *pIn++;
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
acc1 = (b0 * Xn1) + d1;
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = acc1;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
d1 = ((b1 * Xn1) + (a1 * acc1)) + d2;
|
||||
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
d2 = (b2 * Xn1) + (a2 * acc1);
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
*pState++ = d1;
|
||||
*pState++ = d2;
|
||||
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#else
|
||||
|
||||
float64_t Xn2, Xn3, Xn4; /* Input State variables */
|
||||
float64_t acc2, acc3, acc4; /* accumulator */
|
||||
|
||||
|
||||
float64_t p0, p1, p2, p3, p4, A1;
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
|
||||
/*Reading the state values */
|
||||
d1 = pState[0];
|
||||
d2 = pState[1];
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously. */
|
||||
sample = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (sample > 0U) {
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
|
||||
/* Read the four inputs */
|
||||
Xn1 = pIn[0];
|
||||
Xn2 = pIn[1];
|
||||
Xn3 = pIn[2];
|
||||
Xn4 = pIn[3];
|
||||
pIn += 4;
|
||||
|
||||
p0 = b0 * Xn1;
|
||||
p1 = b1 * Xn1;
|
||||
acc1 = p0 + d1;
|
||||
p0 = b0 * Xn2;
|
||||
p3 = a1 * acc1;
|
||||
p2 = b2 * Xn1;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc1;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
p1 = b1 * Xn2;
|
||||
acc2 = p0 + d1;
|
||||
p0 = b0 * Xn3;
|
||||
p3 = a1 * acc2;
|
||||
p2 = b2 * Xn2;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc2;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
p1 = b1 * Xn3;
|
||||
acc3 = p0 + d1;
|
||||
p0 = b0 * Xn4;
|
||||
p3 = a1 * acc3;
|
||||
p2 = b2 * Xn3;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc3;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
acc4 = p0 + d1;
|
||||
p1 = b1 * Xn4;
|
||||
p3 = a1 * acc4;
|
||||
p2 = b2 * Xn4;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc4;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
pOut[0] = acc1;
|
||||
pOut[1] = acc2;
|
||||
pOut[2] = acc3;
|
||||
pOut[3] = acc4;
|
||||
pOut += 4;
|
||||
|
||||
sample--;
|
||||
}
|
||||
|
||||
sample = blockSize & 0x3U;
|
||||
while (sample > 0U) {
|
||||
Xn1 = *pIn++;
|
||||
|
||||
p0 = b0 * Xn1;
|
||||
p1 = b1 * Xn1;
|
||||
acc1 = p0 + d1;
|
||||
p3 = a1 * acc1;
|
||||
p2 = b2 * Xn1;
|
||||
A1 = p1 + p3;
|
||||
p4 = a2 * acc1;
|
||||
d1 = A1 + d2;
|
||||
d2 = p2 + p4;
|
||||
|
||||
*pOut++ = acc1;
|
||||
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
*pState++ = d1;
|
||||
*pState++ = d2;
|
||||
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
LOW_OPTIMIZATION_EXIT
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF2T group
|
||||
*/
|
|
@ -0,0 +1,89 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df2T_init_f32.c
|
||||
* Description: Initialization function for floating-point transposed direct form II Biquad cascade filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF2T
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
||||
* @param[in,out] *S points to an instance of the filter data structure.
|
||||
* @param[in] numStages number of 2nd order stages in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @return none
|
||||
*
|
||||
* <b>Coefficient and State Ordering:</b>
|
||||
* \par
|
||||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
|
||||
* <pre>
|
||||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
|
||||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
|
||||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
|
||||
*
|
||||
* \par
|
||||
* The <code>pState</code> is a pointer to state array.
|
||||
* Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code>.
|
||||
* The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>2*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df2T_init_f32(
|
||||
arm_biquad_cascade_df2T_instance_f32 * S,
|
||||
uint8_t numStages,
|
||||
float32_t * pCoeffs,
|
||||
float32_t * pState)
|
||||
{
|
||||
/* Assign filter stages */
|
||||
S->numStages = numStages;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and size is always 2 * numStages */
|
||||
memset(pState, 0, (2U * (uint32_t) numStages) * sizeof(float32_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF2T group
|
||||
*/
|
|
@ -0,0 +1,89 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_df2T_init_f64.c
|
||||
* Description: Initialization function for floating-point transposed direct form II Biquad cascade filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF2T
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
||||
* @param[in,out] *S points to an instance of the filter data structure.
|
||||
* @param[in] numStages number of 2nd order stages in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @return none
|
||||
*
|
||||
* <b>Coefficient and State Ordering:</b>
|
||||
* \par
|
||||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
|
||||
* <pre>
|
||||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
|
||||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
|
||||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
|
||||
*
|
||||
* \par
|
||||
* The <code>pState</code> is a pointer to state array.
|
||||
* Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code>.
|
||||
* The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>2*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_df2T_init_f64(
|
||||
arm_biquad_cascade_df2T_instance_f64 * S,
|
||||
uint8_t numStages,
|
||||
float64_t * pCoeffs,
|
||||
float64_t * pState)
|
||||
{
|
||||
/* Assign filter stages */
|
||||
S->numStages = numStages;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and size is always 2 * numStages */
|
||||
memset(pState, 0, (2U * (uint32_t) numStages) * sizeof(float64_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF2T group
|
||||
*/
|
|
@ -0,0 +1,670 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_stereo_df2T_f32.c
|
||||
* Description: Processing function for floating-point transposed direct form II Biquad cascade filter. 2 channels
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
|
||||
*
|
||||
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.
|
||||
* The filters are implemented as a cascade of second order Biquad sections.
|
||||
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.
|
||||
* Only floating-point data is supported.
|
||||
*
|
||||
* This function operate on blocks of input and output data and each call to the function
|
||||
* processes <code>blockSize</code> samples through the filter.
|
||||
* <code>pSrc</code> points to the array of input data and
|
||||
* <code>pDst</code> points to the array of output data.
|
||||
* Both arrays contain <code>blockSize</code> values.
|
||||
*
|
||||
* \par Algorithm
|
||||
* Each Biquad stage implements a second order filter using the difference equation:
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + d1
|
||||
* d1 = b1 * x[n] + a1 * y[n] + d2
|
||||
* d2 = b2 * x[n] + a2 * y[n]
|
||||
* </pre>
|
||||
* where d1 and d2 represent the two state values.
|
||||
*
|
||||
* \par
|
||||
* A Biquad filter using a transposed Direct Form II structure is shown below.
|
||||
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"
|
||||
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
|
||||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
|
||||
* Pay careful attention to the sign of the feedback coefficients.
|
||||
* Some design tools flip the sign of the feedback coefficients:
|
||||
* <pre>
|
||||
* y[n] = b0 * x[n] + d1;
|
||||
* d1 = b1 * x[n] - a1 * y[n] + d2;
|
||||
* d2 = b2 * x[n] - a2 * y[n];
|
||||
* </pre>
|
||||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
|
||||
*
|
||||
* \par
|
||||
* Higher order filters are realized as a cascade of second order sections.
|
||||
* <code>numStages</code> refers to the number of second order stages used.
|
||||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
|
||||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the
|
||||
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
|
||||
*
|
||||
* \par
|
||||
* <code>pState</code> points to the state variable array.
|
||||
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.
|
||||
* The state variables are arranged in the <code>pState</code> array as:
|
||||
* <pre>
|
||||
* {d11, d12, d21, d22, ...}
|
||||
* </pre>
|
||||
* where <code>d1x</code> refers to the state variables for the first Biquad and
|
||||
* <code>d2x</code> refers to the state variables for the second Biquad.
|
||||
* The state array has a total length of <code>2*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*
|
||||
* \par
|
||||
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.
|
||||
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.
|
||||
* That is why the Direct Form I structure supports Q15 and Q31 data types.
|
||||
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.
|
||||
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.
|
||||
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.
|
||||
*
|
||||
* \par Instance Structure
|
||||
* The coefficients and state variables for a filter are stored together in an instance data structure.
|
||||
* A separate instance structure must be defined for each filter.
|
||||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
|
||||
*
|
||||
* \par Init Functions
|
||||
* There is also an associated initialization function.
|
||||
* The initialization function performs following operations:
|
||||
* - Sets the values of the internal structure fields.
|
||||
* - Zeros out the values in the state buffer.
|
||||
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
|
||||
* numStages, pCoeffs, pState. Also set all of the values in pState to zero.
|
||||
*
|
||||
* \par
|
||||
* Use of the initialization function is optional.
|
||||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
|
||||
* To place an instance structure into a const data section, the instance structure must be manually initialized.
|
||||
* Set the values in the state buffer to zeros before static initialization.
|
||||
* For example, to statically initialize the instance structure use
|
||||
* <pre>
|
||||
* arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs};
|
||||
* </pre>
|
||||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.
|
||||
* <code>pCoeffs</code> is the address of the coefficient buffer;
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF2T
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
|
||||
* @param[in] *S points to an instance of the filter data structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data
|
||||
* @param[in] blockSize number of samples to process.
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
|
||||
LOW_OPTIMIZATION_ENTER
|
||||
void arm_biquad_cascade_stereo_df2T_f32(
|
||||
const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
|
||||
float32_t *pIn = pSrc; /* source pointer */
|
||||
float32_t *pOut = pDst; /* destination pointer */
|
||||
float32_t *pState = S->pState; /* State pointer */
|
||||
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
|
||||
float32_t acc1a, acc1b; /* accumulator */
|
||||
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
|
||||
float32_t Xn1a, Xn1b; /* temporary input */
|
||||
float32_t d1a, d2a, d1b, d2b; /* state variables */
|
||||
uint32_t sample, stage = S->numStages; /* loop counters */
|
||||
|
||||
#if defined(ARM_MATH_CM7)
|
||||
|
||||
float32_t Xn2a, Xn3a, Xn4a, Xn5a, Xn6a, Xn7a, Xn8a; /* Input State variables */
|
||||
float32_t Xn2b, Xn3b, Xn4b, Xn5b, Xn6b, Xn7b, Xn8b; /* Input State variables */
|
||||
float32_t acc2a, acc3a, acc4a, acc5a, acc6a, acc7a, acc8a; /* Simulates the accumulator */
|
||||
float32_t acc2b, acc3b, acc4b, acc5b, acc6b, acc7b, acc8b; /* Simulates the accumulator */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = pCoeffs[0];
|
||||
b1 = pCoeffs[1];
|
||||
b2 = pCoeffs[2];
|
||||
a1 = pCoeffs[3];
|
||||
/* Apply loop unrolling and compute 8 output values simultaneously. */
|
||||
sample = blockSize >> 3U;
|
||||
a2 = pCoeffs[4];
|
||||
|
||||
/*Reading the state values */
|
||||
d1a = pState[0];
|
||||
d2a = pState[1];
|
||||
d1b = pState[2];
|
||||
d2b = pState[3];
|
||||
|
||||
pCoeffs += 5U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 8 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 7 samples. */
|
||||
while (sample > 0U) {
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
|
||||
/* Read the first 2 inputs. 2 cycles */
|
||||
Xn1a = pIn[0 ];
|
||||
Xn1b = pIn[1 ];
|
||||
|
||||
/* Sample 1. 5 cycles */
|
||||
Xn2a = pIn[2 ];
|
||||
acc1a = b0 * Xn1a + d1a;
|
||||
|
||||
Xn2b = pIn[3 ];
|
||||
d1a = b1 * Xn1a + d2a;
|
||||
|
||||
Xn3a = pIn[4 ];
|
||||
d2a = b2 * Xn1a;
|
||||
|
||||
Xn3b = pIn[5 ];
|
||||
d1a += a1 * acc1a;
|
||||
|
||||
Xn4a = pIn[6 ];
|
||||
d2a += a2 * acc1a;
|
||||
|
||||
/* Sample 2. 5 cycles */
|
||||
Xn4b = pIn[7 ];
|
||||
acc1b = b0 * Xn1b + d1b;
|
||||
|
||||
Xn5a = pIn[8 ];
|
||||
d1b = b1 * Xn1b + d2b;
|
||||
|
||||
Xn5b = pIn[9 ];
|
||||
d2b = b2 * Xn1b;
|
||||
|
||||
Xn6a = pIn[10];
|
||||
d1b += a1 * acc1b;
|
||||
|
||||
Xn6b = pIn[11];
|
||||
d2b += a2 * acc1b;
|
||||
|
||||
/* Sample 3. 5 cycles */
|
||||
Xn7a = pIn[12];
|
||||
acc2a = b0 * Xn2a + d1a;
|
||||
|
||||
Xn7b = pIn[13];
|
||||
d1a = b1 * Xn2a + d2a;
|
||||
|
||||
Xn8a = pIn[14];
|
||||
d2a = b2 * Xn2a;
|
||||
|
||||
Xn8b = pIn[15];
|
||||
d1a += a1 * acc2a;
|
||||
|
||||
pIn += 16;
|
||||
d2a += a2 * acc2a;
|
||||
|
||||
/* Sample 4. 5 cycles */
|
||||
acc2b = b0 * Xn2b + d1b;
|
||||
d1b = b1 * Xn2b + d2b;
|
||||
d2b = b2 * Xn2b;
|
||||
d1b += a1 * acc2b;
|
||||
d2b += a2 * acc2b;
|
||||
|
||||
/* Sample 5. 5 cycles */
|
||||
acc3a = b0 * Xn3a + d1a;
|
||||
d1a = b1 * Xn3a + d2a;
|
||||
d2a = b2 * Xn3a;
|
||||
d1a += a1 * acc3a;
|
||||
d2a += a2 * acc3a;
|
||||
|
||||
/* Sample 6. 5 cycles */
|
||||
acc3b = b0 * Xn3b + d1b;
|
||||
d1b = b1 * Xn3b + d2b;
|
||||
d2b = b2 * Xn3b;
|
||||
d1b += a1 * acc3b;
|
||||
d2b += a2 * acc3b;
|
||||
|
||||
/* Sample 7. 5 cycles */
|
||||
acc4a = b0 * Xn4a + d1a;
|
||||
d1a = b1 * Xn4a + d2a;
|
||||
d2a = b2 * Xn4a;
|
||||
d1a += a1 * acc4a;
|
||||
d2a += a2 * acc4a;
|
||||
|
||||
/* Sample 8. 5 cycles */
|
||||
acc4b = b0 * Xn4b + d1b;
|
||||
d1b = b1 * Xn4b + d2b;
|
||||
d2b = b2 * Xn4b;
|
||||
d1b += a1 * acc4b;
|
||||
d2b += a2 * acc4b;
|
||||
|
||||
/* Sample 9. 5 cycles */
|
||||
acc5a = b0 * Xn5a + d1a;
|
||||
d1a = b1 * Xn5a + d2a;
|
||||
d2a = b2 * Xn5a;
|
||||
d1a += a1 * acc5a;
|
||||
d2a += a2 * acc5a;
|
||||
|
||||
/* Sample 10. 5 cycles */
|
||||
acc5b = b0 * Xn5b + d1b;
|
||||
d1b = b1 * Xn5b + d2b;
|
||||
d2b = b2 * Xn5b;
|
||||
d1b += a1 * acc5b;
|
||||
d2b += a2 * acc5b;
|
||||
|
||||
/* Sample 11. 5 cycles */
|
||||
acc6a = b0 * Xn6a + d1a;
|
||||
d1a = b1 * Xn6a + d2a;
|
||||
d2a = b2 * Xn6a;
|
||||
d1a += a1 * acc6a;
|
||||
d2a += a2 * acc6a;
|
||||
|
||||
/* Sample 12. 5 cycles */
|
||||
acc6b = b0 * Xn6b + d1b;
|
||||
d1b = b1 * Xn6b + d2b;
|
||||
d2b = b2 * Xn6b;
|
||||
d1b += a1 * acc6b;
|
||||
d2b += a2 * acc6b;
|
||||
|
||||
/* Sample 13. 5 cycles */
|
||||
acc7a = b0 * Xn7a + d1a;
|
||||
d1a = b1 * Xn7a + d2a;
|
||||
|
||||
pOut[0 ] = acc1a ;
|
||||
d2a = b2 * Xn7a;
|
||||
|
||||
pOut[1 ] = acc1b ;
|
||||
d1a += a1 * acc7a;
|
||||
|
||||
pOut[2 ] = acc2a ;
|
||||
d2a += a2 * acc7a;
|
||||
|
||||
/* Sample 14. 5 cycles */
|
||||
pOut[3 ] = acc2b ;
|
||||
acc7b = b0 * Xn7b + d1b;
|
||||
|
||||
pOut[4 ] = acc3a ;
|
||||
d1b = b1 * Xn7b + d2b;
|
||||
|
||||
pOut[5 ] = acc3b ;
|
||||
d2b = b2 * Xn7b;
|
||||
|
||||
pOut[6 ] = acc4a ;
|
||||
d1b += a1 * acc7b;
|
||||
|
||||
pOut[7 ] = acc4b ;
|
||||
d2b += a2 * acc7b;
|
||||
|
||||
/* Sample 15. 5 cycles */
|
||||
pOut[8 ] = acc5a ;
|
||||
acc8a = b0 * Xn8a + d1a;
|
||||
|
||||
pOut[9 ] = acc5b;
|
||||
d1a = b1 * Xn8a + d2a;
|
||||
|
||||
pOut[10] = acc6a;
|
||||
d2a = b2 * Xn8a;
|
||||
|
||||
pOut[11] = acc6b;
|
||||
d1a += a1 * acc8a;
|
||||
|
||||
pOut[12] = acc7a;
|
||||
d2a += a2 * acc8a;
|
||||
|
||||
/* Sample 16. 5 cycles */
|
||||
pOut[13] = acc7b;
|
||||
acc8b = b0 * Xn8b + d1b;
|
||||
|
||||
pOut[14] = acc8a;
|
||||
d1b = b1 * Xn8b + d2b;
|
||||
|
||||
pOut[15] = acc8b;
|
||||
d2b = b2 * Xn8b;
|
||||
|
||||
sample--;
|
||||
d1b += a1 * acc8b;
|
||||
|
||||
pOut += 16;
|
||||
d2b += a2 * acc8b;
|
||||
}
|
||||
|
||||
sample = blockSize & 0x7U;
|
||||
while (sample > 0U) {
|
||||
/* Read the input */
|
||||
Xn1a = *pIn++; //Channel a
|
||||
Xn1b = *pIn++; //Channel b
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
acc1a = (b0 * Xn1a) + d1a;
|
||||
acc1b = (b0 * Xn1b) + d1b;
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = acc1a;
|
||||
*pOut++ = acc1b;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a;
|
||||
d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b;
|
||||
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
d2a = (b2 * Xn1a) + (a2 * acc1a);
|
||||
d2b = (b2 * Xn1b) + (a2 * acc1b);
|
||||
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
pState[0] = d1a;
|
||||
pState[1] = d2a;
|
||||
|
||||
pState[2] = d1b;
|
||||
pState[3] = d2b;
|
||||
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
pState += 4U;
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#elif defined(ARM_MATH_CM0_FAMILY)
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/*Reading the state values */
|
||||
d1a = pState[0];
|
||||
d2a = pState[1];
|
||||
d1b = pState[2];
|
||||
d2b = pState[3];
|
||||
|
||||
|
||||
sample = blockSize;
|
||||
|
||||
while (sample > 0U)
|
||||
{
|
||||
/* Read the input */
|
||||
Xn1a = *pIn++; //Channel a
|
||||
Xn1b = *pIn++; //Channel b
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
acc1a = (b0 * Xn1a) + d1a;
|
||||
acc1b = (b0 * Xn1b) + d1b;
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = acc1a;
|
||||
*pOut++ = acc1b;
|
||||
|
||||
/* Every time after the output is computed state should be updated. */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a;
|
||||
d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b;
|
||||
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
d2a = (b2 * Xn1a) + (a2 * acc1a);
|
||||
d2b = (b2 * Xn1b) + (a2 * acc1b);
|
||||
|
||||
/* decrement the loop counter */
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
*pState++ = d1a;
|
||||
*pState++ = d2a;
|
||||
*pState++ = d1b;
|
||||
*pState++ = d2b;
|
||||
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#else
|
||||
|
||||
float32_t Xn2a, Xn3a, Xn4a; /* Input State variables */
|
||||
float32_t Xn2b, Xn3b, Xn4b; /* Input State variables */
|
||||
float32_t acc2a, acc3a, acc4a; /* accumulator */
|
||||
float32_t acc2b, acc3b, acc4b; /* accumulator */
|
||||
float32_t p0a, p1a, p2a, p3a, p4a, A1a;
|
||||
float32_t p0b, p1b, p2b, p3b, p4b, A1b;
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
do
|
||||
{
|
||||
/* Reading the coefficients */
|
||||
b0 = *pCoeffs++;
|
||||
b1 = *pCoeffs++;
|
||||
b2 = *pCoeffs++;
|
||||
a1 = *pCoeffs++;
|
||||
a2 = *pCoeffs++;
|
||||
|
||||
/*Reading the state values */
|
||||
d1a = pState[0];
|
||||
d2a = pState[1];
|
||||
d1b = pState[2];
|
||||
d2b = pState[3];
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously. */
|
||||
sample = blockSize >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (sample > 0U) {
|
||||
|
||||
/* y[n] = b0 * x[n] + d1 */
|
||||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
|
||||
/* d2 = b2 * x[n] + a2 * y[n] */
|
||||
|
||||
/* Read the four inputs */
|
||||
Xn1a = pIn[0];
|
||||
Xn1b = pIn[1];
|
||||
Xn2a = pIn[2];
|
||||
Xn2b = pIn[3];
|
||||
Xn3a = pIn[4];
|
||||
Xn3b = pIn[5];
|
||||
Xn4a = pIn[6];
|
||||
Xn4b = pIn[7];
|
||||
pIn += 8;
|
||||
|
||||
p0a = b0 * Xn1a;
|
||||
p0b = b0 * Xn1b;
|
||||
p1a = b1 * Xn1a;
|
||||
p1b = b1 * Xn1b;
|
||||
acc1a = p0a + d1a;
|
||||
acc1b = p0b + d1b;
|
||||
p0a = b0 * Xn2a;
|
||||
p0b = b0 * Xn2b;
|
||||
p3a = a1 * acc1a;
|
||||
p3b = a1 * acc1b;
|
||||
p2a = b2 * Xn1a;
|
||||
p2b = b2 * Xn1b;
|
||||
A1a = p1a + p3a;
|
||||
A1b = p1b + p3b;
|
||||
p4a = a2 * acc1a;
|
||||
p4b = a2 * acc1b;
|
||||
d1a = A1a + d2a;
|
||||
d1b = A1b + d2b;
|
||||
d2a = p2a + p4a;
|
||||
d2b = p2b + p4b;
|
||||
|
||||
p1a = b1 * Xn2a;
|
||||
p1b = b1 * Xn2b;
|
||||
acc2a = p0a + d1a;
|
||||
acc2b = p0b + d1b;
|
||||
p0a = b0 * Xn3a;
|
||||
p0b = b0 * Xn3b;
|
||||
p3a = a1 * acc2a;
|
||||
p3b = a1 * acc2b;
|
||||
p2a = b2 * Xn2a;
|
||||
p2b = b2 * Xn2b;
|
||||
A1a = p1a + p3a;
|
||||
A1b = p1b + p3b;
|
||||
p4a = a2 * acc2a;
|
||||
p4b = a2 * acc2b;
|
||||
d1a = A1a + d2a;
|
||||
d1b = A1b + d2b;
|
||||
d2a = p2a + p4a;
|
||||
d2b = p2b + p4b;
|
||||
|
||||
p1a = b1 * Xn3a;
|
||||
p1b = b1 * Xn3b;
|
||||
acc3a = p0a + d1a;
|
||||
acc3b = p0b + d1b;
|
||||
p0a = b0 * Xn4a;
|
||||
p0b = b0 * Xn4b;
|
||||
p3a = a1 * acc3a;
|
||||
p3b = a1 * acc3b;
|
||||
p2a = b2 * Xn3a;
|
||||
p2b = b2 * Xn3b;
|
||||
A1a = p1a + p3a;
|
||||
A1b = p1b + p3b;
|
||||
p4a = a2 * acc3a;
|
||||
p4b = a2 * acc3b;
|
||||
d1a = A1a + d2a;
|
||||
d1b = A1b + d2b;
|
||||
d2a = p2a + p4a;
|
||||
d2b = p2b + p4b;
|
||||
|
||||
acc4a = p0a + d1a;
|
||||
acc4b = p0b + d1b;
|
||||
p1a = b1 * Xn4a;
|
||||
p1b = b1 * Xn4b;
|
||||
p3a = a1 * acc4a;
|
||||
p3b = a1 * acc4b;
|
||||
p2a = b2 * Xn4a;
|
||||
p2b = b2 * Xn4b;
|
||||
A1a = p1a + p3a;
|
||||
A1b = p1b + p3b;
|
||||
p4a = a2 * acc4a;
|
||||
p4b = a2 * acc4b;
|
||||
d1a = A1a + d2a;
|
||||
d1b = A1b + d2b;
|
||||
d2a = p2a + p4a;
|
||||
d2b = p2b + p4b;
|
||||
|
||||
pOut[0] = acc1a;
|
||||
pOut[1] = acc1b;
|
||||
pOut[2] = acc2a;
|
||||
pOut[3] = acc2b;
|
||||
pOut[4] = acc3a;
|
||||
pOut[5] = acc3b;
|
||||
pOut[6] = acc4a;
|
||||
pOut[7] = acc4b;
|
||||
pOut += 8;
|
||||
|
||||
sample--;
|
||||
}
|
||||
|
||||
sample = blockSize & 0x3U;
|
||||
while (sample > 0U) {
|
||||
Xn1a = *pIn++;
|
||||
Xn1b = *pIn++;
|
||||
|
||||
p0a = b0 * Xn1a;
|
||||
p0b = b0 * Xn1b;
|
||||
p1a = b1 * Xn1a;
|
||||
p1b = b1 * Xn1b;
|
||||
acc1a = p0a + d1a;
|
||||
acc1b = p0b + d1b;
|
||||
p3a = a1 * acc1a;
|
||||
p3b = a1 * acc1b;
|
||||
p2a = b2 * Xn1a;
|
||||
p2b = b2 * Xn1b;
|
||||
A1a = p1a + p3a;
|
||||
A1b = p1b + p3b;
|
||||
p4a = a2 * acc1a;
|
||||
p4b = a2 * acc1b;
|
||||
d1a = A1a + d2a;
|
||||
d1b = A1b + d2b;
|
||||
d2a = p2a + p4a;
|
||||
d2b = p2b + p4b;
|
||||
|
||||
*pOut++ = acc1a;
|
||||
*pOut++ = acc1b;
|
||||
|
||||
sample--;
|
||||
}
|
||||
|
||||
/* Store the updated state variables back into the state array */
|
||||
*pState++ = d1a;
|
||||
*pState++ = d2a;
|
||||
*pState++ = d1b;
|
||||
*pState++ = d2b;
|
||||
|
||||
/* The current stage input is given as the output to the next stage */
|
||||
pIn = pDst;
|
||||
|
||||
/*Reset the output working pointer */
|
||||
pOut = pDst;
|
||||
|
||||
/* decrement the loop counter */
|
||||
stage--;
|
||||
|
||||
} while (stage > 0U);
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
LOW_OPTIMIZATION_EXIT
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF2T group
|
||||
*/
|
|
@ -0,0 +1,89 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_biquad_cascade_stereo_df2T_init_f32.c
|
||||
* Description: Initialization function for floating-point transposed direct form II Biquad cascade filter
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BiquadCascadeDF2T
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
||||
* @param[in,out] *S points to an instance of the filter data structure.
|
||||
* @param[in] numStages number of 2nd order stages in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @return none
|
||||
*
|
||||
* <b>Coefficient and State Ordering:</b>
|
||||
* \par
|
||||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
|
||||
* <pre>
|
||||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
|
||||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
|
||||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
|
||||
*
|
||||
* \par
|
||||
* The <code>pState</code> is a pointer to state array.
|
||||
* Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code> for each channel.
|
||||
* The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on.
|
||||
* The state array has a total length of <code>2*numStages</code> values.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
*/
|
||||
|
||||
void arm_biquad_cascade_stereo_df2T_init_f32(
|
||||
arm_biquad_cascade_stereo_df2T_instance_f32 * S,
|
||||
uint8_t numStages,
|
||||
float32_t * pCoeffs,
|
||||
float32_t * pState)
|
||||
{
|
||||
/* Assign filter stages */
|
||||
S->numStages = numStages;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and size is always 4 * numStages */
|
||||
memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(float32_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BiquadCascadeDF2T group
|
||||
*/
|
|
@ -0,0 +1,635 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_conv_f32.c
|
||||
* Description: Convolution of floating-point sequences
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup Conv Convolution
|
||||
*
|
||||
* Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
|
||||
* Convolution is similar to correlation and is frequently used in filtering and data analysis.
|
||||
* The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
|
||||
* The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
|
||||
*
|
||||
* \par Algorithm
|
||||
* Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
|
||||
* Then the convolution
|
||||
*
|
||||
* <pre>
|
||||
* c[n] = a[n] * b[n]
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* is defined as
|
||||
* \image html ConvolutionEquation.gif
|
||||
* \par
|
||||
* Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
|
||||
* <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
|
||||
* <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
|
||||
* The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
|
||||
*
|
||||
* \par
|
||||
* Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
|
||||
* the signal <code>b[n]</code> slides over <code>a[n]</code>.
|
||||
* For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
|
||||
*
|
||||
* \par
|
||||
* Note that convolution is a commutative operation:
|
||||
*
|
||||
* <pre>
|
||||
* a[n] * b[n] = b[n] * a[n].
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* This means that switching the A and B arguments to the convolution functions has no effect.
|
||||
*
|
||||
* <b>Fixed-Point Behavior</b>
|
||||
*
|
||||
* \par
|
||||
* Convolution requires summing up a large number of intermediate products.
|
||||
* As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
|
||||
* Refer to the function specific documentation below for further details of the particular algorithm used.
|
||||
*
|
||||
*
|
||||
* <b>Fast Versions</b>
|
||||
*
|
||||
* \par
|
||||
* Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires
|
||||
* the input signals should be scaled down to avoid intermediate overflows.
|
||||
*
|
||||
*
|
||||
* <b>Opt Versions</b>
|
||||
*
|
||||
* \par
|
||||
* Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
|
||||
* These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Conv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Convolution of floating-point sequences.
|
||||
* @param[in] *pSrcA points to the first input sequence.
|
||||
* @param[in] srcALen length of the first input sequence.
|
||||
* @param[in] *pSrcB points to the second input sequence.
|
||||
* @param[in] srcBLen length of the second input sequence.
|
||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_conv_f32(
|
||||
float32_t * pSrcA,
|
||||
uint32_t srcALen,
|
||||
float32_t * pSrcB,
|
||||
uint32_t srcBLen,
|
||||
float32_t * pDst)
|
||||
{
|
||||
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
float32_t *pIn1; /* inputA pointer */
|
||||
float32_t *pIn2; /* inputB pointer */
|
||||
float32_t *pOut = pDst; /* output pointer */
|
||||
float32_t *px; /* Intermediate inputA pointer */
|
||||
float32_t *py; /* Intermediate inputB pointer */
|
||||
float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
|
||||
float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
|
||||
float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
|
||||
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */
|
||||
|
||||
/* The algorithm implementation is based on the lengths of the inputs. */
|
||||
/* srcB is always made to slide across srcA. */
|
||||
/* So srcBLen is always considered as shorter or equal to srcALen */
|
||||
if (srcALen >= srcBLen)
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcA;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcB;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcB;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcA;
|
||||
|
||||
/* srcBLen is always considered as shorter or equal to srcALen */
|
||||
j = srcBLen;
|
||||
srcBLen = srcALen;
|
||||
srcALen = j;
|
||||
}
|
||||
|
||||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
|
||||
/* The function is internally
|
||||
* divided into three stages according to the number of multiplications that has to be
|
||||
* taken place between inputA samples and inputB samples. In the first stage of the
|
||||
* algorithm, the multiplications increase by one for every iteration.
|
||||
* In the second stage of the algorithm, srcBLen number of multiplications are done.
|
||||
* In the third stage of the algorithm, the multiplications decrease by one
|
||||
* for every iteration. */
|
||||
|
||||
/* The algorithm is implemented in three stages.
|
||||
The loop counters of each stage is initiated here. */
|
||||
blockSize1 = srcBLen - 1U;
|
||||
blockSize2 = srcALen - (srcBLen - 1U);
|
||||
blockSize3 = blockSize1;
|
||||
|
||||
/* --------------------------
|
||||
* initializations of stage1
|
||||
* -------------------------*/
|
||||
|
||||
/* sum = x[0] * y[0]
|
||||
* sum = x[0] * y[1] + x[1] * y[0]
|
||||
* ....
|
||||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are increased by 1 for every iteration.
|
||||
The count variable holds the number of MAC operations performed */
|
||||
count = 1U;
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
py = pIn2;
|
||||
|
||||
|
||||
/* ------------------------
|
||||
* Stage1 process
|
||||
* ----------------------*/
|
||||
|
||||
/* The first stage starts here */
|
||||
while (blockSize1 > 0U)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0.0f;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = count >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* x[0] * y[srcBLen - 1] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* x[1] * y[srcBLen - 2] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* x[2] * y[srcBLen - 3] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* x[3] * y[srcBLen - 4] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the count is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = count % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
py = pIn2 + count;
|
||||
px = pIn1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize1--;
|
||||
}
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage2
|
||||
* ------------------------*/
|
||||
|
||||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
|
||||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
|
||||
* ....
|
||||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
|
||||
*/
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1U);
|
||||
py = pSrc2;
|
||||
|
||||
/* count is index by which the pointer pIn1 to be incremented */
|
||||
count = 0U;
|
||||
|
||||
/* -------------------
|
||||
* Stage2 process
|
||||
* ------------------*/
|
||||
|
||||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
|
||||
* So, to loop unroll over blockSize2,
|
||||
* srcBLen should be greater than or equal to 4 */
|
||||
if (srcBLen >= 4U)
|
||||
{
|
||||
/* Loop unroll over blockSize2, by 4 */
|
||||
blkCnt = blockSize2 >> 2U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0.0f;
|
||||
acc1 = 0.0f;
|
||||
acc2 = 0.0f;
|
||||
acc3 = 0.0f;
|
||||
|
||||
/* read x[0], x[1], x[2] samples */
|
||||
x0 = *(px++);
|
||||
x1 = *(px++);
|
||||
x2 = *(px++);
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
do
|
||||
{
|
||||
/* Read y[srcBLen - 1] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[3] sample */
|
||||
x3 = *(px);
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
/* acc0 += x[0] * y[srcBLen - 1] */
|
||||
acc0 += x0 * c0;
|
||||
|
||||
/* acc1 += x[1] * y[srcBLen - 1] */
|
||||
acc1 += x1 * c0;
|
||||
|
||||
/* acc2 += x[2] * y[srcBLen - 1] */
|
||||
acc2 += x2 * c0;
|
||||
|
||||
/* acc3 += x[3] * y[srcBLen - 1] */
|
||||
acc3 += x3 * c0;
|
||||
|
||||
/* Read y[srcBLen - 2] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[4] sample */
|
||||
x0 = *(px + 1U);
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
/* acc0 += x[1] * y[srcBLen - 2] */
|
||||
acc0 += x1 * c0;
|
||||
/* acc1 += x[2] * y[srcBLen - 2] */
|
||||
acc1 += x2 * c0;
|
||||
/* acc2 += x[3] * y[srcBLen - 2] */
|
||||
acc2 += x3 * c0;
|
||||
/* acc3 += x[4] * y[srcBLen - 2] */
|
||||
acc3 += x0 * c0;
|
||||
|
||||
/* Read y[srcBLen - 3] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[5] sample */
|
||||
x1 = *(px + 2U);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[2] * y[srcBLen - 3] */
|
||||
acc0 += x2 * c0;
|
||||
/* acc1 += x[3] * y[srcBLen - 2] */
|
||||
acc1 += x3 * c0;
|
||||
/* acc2 += x[4] * y[srcBLen - 2] */
|
||||
acc2 += x0 * c0;
|
||||
/* acc3 += x[5] * y[srcBLen - 2] */
|
||||
acc3 += x1 * c0;
|
||||
|
||||
/* Read y[srcBLen - 4] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[6] sample */
|
||||
x2 = *(px + 3U);
|
||||
px += 4U;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[3] * y[srcBLen - 4] */
|
||||
acc0 += x3 * c0;
|
||||
/* acc1 += x[4] * y[srcBLen - 4] */
|
||||
acc1 += x0 * c0;
|
||||
/* acc2 += x[5] * y[srcBLen - 4] */
|
||||
acc2 += x1 * c0;
|
||||
/* acc3 += x[6] * y[srcBLen - 4] */
|
||||
acc3 += x2 * c0;
|
||||
|
||||
|
||||
} while (--k);
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Read y[srcBLen - 5] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[7] sample */
|
||||
x3 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[4] * y[srcBLen - 5] */
|
||||
acc0 += x0 * c0;
|
||||
/* acc1 += x[5] * y[srcBLen - 5] */
|
||||
acc1 += x1 * c0;
|
||||
/* acc2 += x[6] * y[srcBLen - 5] */
|
||||
acc2 += x2 * c0;
|
||||
/* acc3 += x[7] * y[srcBLen - 5] */
|
||||
acc3 += x3 * c0;
|
||||
|
||||
/* Reuse the present samples for the next MAC */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
x2 = x3;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = acc0;
|
||||
*pOut++ = acc1;
|
||||
*pOut++ = acc2;
|
||||
*pOut++ = acc3;
|
||||
|
||||
/* Increment the pointer pIn1 index, count by 4 */
|
||||
count += 4U;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
|
||||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize2 % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0.0f;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum += *px++ * *py--;
|
||||
sum += *px++ * *py--;
|
||||
sum += *px++ * *py--;
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the srcBLen is not a multiple of 4,
|
||||
* the blockSize2 loop cannot be unrolled by 4 */
|
||||
blkCnt = blockSize2;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0.0f;
|
||||
|
||||
/* srcBLen number of MACS should be performed */
|
||||
k = srcBLen;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage3
|
||||
* -------------------------*/
|
||||
|
||||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
|
||||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
|
||||
* ....
|
||||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
|
||||
* sum += x[srcALen-1] * y[srcBLen-1]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are decreased by 1 for every iteration.
|
||||
The blockSize3 variable holds the number of MAC operations performed */
|
||||
|
||||
/* Working pointer of inputA */
|
||||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
|
||||
px = pSrc1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1U);
|
||||
py = pSrc2;
|
||||
|
||||
/* -------------------
|
||||
* Stage3 process
|
||||
* ------------------*/
|
||||
|
||||
while (blockSize3 > 0U)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0.0f;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = blockSize3 >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = blockSize3 % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
/* sum += x[srcALen-1] * y[srcBLen-1] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = ++pSrc1;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize3--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
float32_t *pIn1 = pSrcA; /* inputA pointer */
|
||||
float32_t *pIn2 = pSrcB; /* inputB pointer */
|
||||
float32_t sum; /* Accumulator */
|
||||
uint32_t i, j; /* loop counters */
|
||||
|
||||
/* Loop to calculate convolution for output length number of times */
|
||||
for (i = 0U; i < ((srcALen + srcBLen) - 1U); i++)
|
||||
{
|
||||
/* Initialize sum with zero to carry out MAC operations */
|
||||
sum = 0.0f;
|
||||
|
||||
/* Loop to perform MAC operations according to convolution equation */
|
||||
for (j = 0U; j <= i; j++)
|
||||
{
|
||||
/* Check the array limitations */
|
||||
if ((((i - j) < srcBLen) && (j < srcALen)))
|
||||
{
|
||||
/* z[i] += x[i-j] * y[j] */
|
||||
sum += pIn1[j] * pIn2[i - j];
|
||||
}
|
||||
}
|
||||
/* Store the output in the destination buffer */
|
||||
pDst[i] = sum;
|
||||
}
|
||||
|
||||
#endif /* #if defined (ARM_MATH_DSP) */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Conv group
|
||||
*/
|
|
@ -0,0 +1,531 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_conv_fast_opt_q15.c
|
||||
* Description: Fast Q15 Convolution
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Conv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
|
||||
* @param[in] *pSrcA points to the first input sequence.
|
||||
* @param[in] srcALen length of the first input sequence.
|
||||
* @param[in] *pSrcB points to the second input sequence.
|
||||
* @param[in] srcBLen length of the second input sequence.
|
||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
||||
* @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
||||
* @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
||||
* @return none.
|
||||
*
|
||||
* \par Restrictions
|
||||
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
|
||||
* In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
*
|
||||
* \par
|
||||
* This fast version uses a 32-bit accumulator with 2.30 format.
|
||||
* The accumulator maintains full precision of the intermediate multiplication results
|
||||
* but provides only a single guard bit. There is no saturation on intermediate additions.
|
||||
* Thus, if the accumulator overflows it wraps around and distorts the result.
|
||||
* The input signals should be scaled down to avoid intermediate overflows.
|
||||
* Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
|
||||
* as maximum of min(srcALen, srcBLen) number of additions are carried internally.
|
||||
* The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
|
||||
*
|
||||
* \par
|
||||
* See <code>arm_conv_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
|
||||
*/
|
||||
|
||||
void arm_conv_fast_opt_q15(
|
||||
q15_t * pSrcA,
|
||||
uint32_t srcALen,
|
||||
q15_t * pSrcB,
|
||||
uint32_t srcBLen,
|
||||
q15_t * pDst,
|
||||
q15_t * pScratch1,
|
||||
q15_t * pScratch2)
|
||||
{
|
||||
q31_t acc0, acc1, acc2, acc3; /* Accumulators */
|
||||
q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
|
||||
q31_t y1, y2; /* State variables */
|
||||
q15_t *pOut = pDst; /* output pointer */
|
||||
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
|
||||
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
|
||||
q15_t *pIn1; /* inputA pointer */
|
||||
q15_t *pIn2; /* inputB pointer */
|
||||
q15_t *px; /* Intermediate inputA pointer */
|
||||
q15_t *py; /* Intermediate inputB pointer */
|
||||
uint32_t j, k, blkCnt; /* loop counter */
|
||||
uint32_t tapCnt; /* loop count */
|
||||
#ifdef UNALIGNED_SUPPORT_DISABLE
|
||||
|
||||
q15_t a, b;
|
||||
|
||||
#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
|
||||
|
||||
/* The algorithm implementation is based on the lengths of the inputs. */
|
||||
/* srcB is always made to slide across srcA. */
|
||||
/* So srcBLen is always considered as shorter or equal to srcALen */
|
||||
if (srcALen >= srcBLen)
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcA;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcB;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcB;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcA;
|
||||
|
||||
/* srcBLen is always considered as shorter or equal to srcALen */
|
||||
j = srcBLen;
|
||||
srcBLen = srcALen;
|
||||
srcALen = j;
|
||||
}
|
||||
|
||||
/* Pointer to take end of scratch2 buffer */
|
||||
pScr2 = pScratch2 + srcBLen - 1;
|
||||
|
||||
/* points to smaller length sequence */
|
||||
px = pIn2;
|
||||
|
||||
/* Apply loop unrolling and do 4 Copies simultaneously. */
|
||||
k = srcBLen >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling copies 4 data points at a time.
|
||||
** a second loop below copies for the remaining 1 to 3 samples. */
|
||||
|
||||
/* Copy smaller length input sequence in reverse order into second scratch buffer */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* copy second buffer in reversal manner */
|
||||
*pScr2-- = *px++;
|
||||
*pScr2-- = *px++;
|
||||
*pScr2-- = *px++;
|
||||
*pScr2-- = *px++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the count is not a multiple of 4, copy remaining samples here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* copy second buffer in reversal manner for remaining samples */
|
||||
*pScr2-- = *px++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Initialze temporary scratch pointer */
|
||||
pScr1 = pScratch1;
|
||||
|
||||
/* Assuming scratch1 buffer is aligned by 32-bit */
|
||||
/* Fill (srcBLen - 1U) zeros in scratch1 buffer */
|
||||
arm_fill_q15(0, pScr1, (srcBLen - 1U));
|
||||
|
||||
/* Update temporary scratch pointer */
|
||||
pScr1 += (srcBLen - 1U);
|
||||
|
||||
/* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
|
||||
|
||||
#ifndef UNALIGNED_SUPPORT_DISABLE
|
||||
|
||||
/* Copy (srcALen) samples in scratch buffer */
|
||||
arm_copy_q15(pIn1, pScr1, srcALen);
|
||||
|
||||
/* Update pointers */
|
||||
pScr1 += srcALen;
|
||||
|
||||
#else
|
||||
|
||||
/* Apply loop unrolling and do 4 Copies simultaneously. */
|
||||
k = srcALen >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling copies 4 data points at a time.
|
||||
** a second loop below copies for the remaining 1 to 3 samples. */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* copy second buffer in reversal manner */
|
||||
*pScr1++ = *pIn1++;
|
||||
*pScr1++ = *pIn1++;
|
||||
*pScr1++ = *pIn1++;
|
||||
*pScr1++ = *pIn1++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the count is not a multiple of 4, copy remaining samples here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcALen % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* copy second buffer in reversal manner for remaining samples */
|
||||
*pScr1++ = *pIn1++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
||||
|
||||
|
||||
#ifndef UNALIGNED_SUPPORT_DISABLE
|
||||
|
||||
/* Fill (srcBLen - 1U) zeros at end of scratch buffer */
|
||||
arm_fill_q15(0, pScr1, (srcBLen - 1U));
|
||||
|
||||
/* Update pointer */
|
||||
pScr1 += (srcBLen - 1U);
|
||||
|
||||
#else
|
||||
|
||||
/* Apply loop unrolling and do 4 Copies simultaneously. */
|
||||
k = (srcBLen - 1U) >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling copies 4 data points at a time.
|
||||
** a second loop below copies for the remaining 1 to 3 samples. */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* copy second buffer in reversal manner */
|
||||
*pScr1++ = 0;
|
||||
*pScr1++ = 0;
|
||||
*pScr1++ = 0;
|
||||
*pScr1++ = 0;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the count is not a multiple of 4, copy remaining samples here.
|
||||
** No loop unrolling is used. */
|
||||
k = (srcBLen - 1U) % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* copy second buffer in reversal manner for remaining samples */
|
||||
*pScr1++ = 0;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
||||
|
||||
/* Temporary pointer for scratch2 */
|
||||
py = pScratch2;
|
||||
|
||||
|
||||
/* Initialization of pIn2 pointer */
|
||||
pIn2 = py;
|
||||
|
||||
/* First part of the processing with loop unrolling process 4 data points at a time.
|
||||
** a second loop below process for the remaining 1 to 3 samples. */
|
||||
|
||||
/* Actual convolution process starts here */
|
||||
blkCnt = (srcALen + srcBLen - 1U) >> 2;
|
||||
|
||||
while (blkCnt > 0)
|
||||
{
|
||||
/* Initialze temporary scratch pointer as scratch1 */
|
||||
pScr1 = pScratch1;
|
||||
|
||||
/* Clear Accumlators */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
acc3 = 0;
|
||||
|
||||
/* Read two samples from scratch1 buffer */
|
||||
x1 = *__SIMD32(pScr1)++;
|
||||
|
||||
/* Read next two samples from scratch1 buffer */
|
||||
x2 = *__SIMD32(pScr1)++;
|
||||
|
||||
tapCnt = (srcBLen) >> 2U;
|
||||
|
||||
while (tapCnt > 0U)
|
||||
{
|
||||
|
||||
#ifndef UNALIGNED_SUPPORT_DISABLE
|
||||
|
||||
/* Read four samples from smaller buffer */
|
||||
y1 = _SIMD32_OFFSET(pIn2);
|
||||
y2 = _SIMD32_OFFSET(pIn2 + 2U);
|
||||
|
||||
/* multiply and accumlate */
|
||||
acc0 = __SMLAD(x1, y1, acc0);
|
||||
acc2 = __SMLAD(x2, y1, acc2);
|
||||
|
||||
/* pack input data */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x3 = __PKHBT(x2, x1, 0);
|
||||
#else
|
||||
x3 = __PKHBT(x1, x2, 0);
|
||||
#endif
|
||||
|
||||
/* multiply and accumlate */
|
||||
acc1 = __SMLADX(x3, y1, acc1);
|
||||
|
||||
/* Read next two samples from scratch1 buffer */
|
||||
x1 = _SIMD32_OFFSET(pScr1);
|
||||
|
||||
/* multiply and accumlate */
|
||||
acc0 = __SMLAD(x2, y2, acc0);
|
||||
acc2 = __SMLAD(x1, y2, acc2);
|
||||
|
||||
/* pack input data */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x3 = __PKHBT(x1, x2, 0);
|
||||
#else
|
||||
x3 = __PKHBT(x2, x1, 0);
|
||||
#endif
|
||||
|
||||
acc3 = __SMLADX(x3, y1, acc3);
|
||||
acc1 = __SMLADX(x3, y2, acc1);
|
||||
|
||||
x2 = _SIMD32_OFFSET(pScr1 + 2U);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x3 = __PKHBT(x2, x1, 0);
|
||||
#else
|
||||
x3 = __PKHBT(x1, x2, 0);
|
||||
#endif
|
||||
|
||||
acc3 = __SMLADX(x3, y2, acc3);
|
||||
|
||||
#else
|
||||
|
||||
/* Read four samples from smaller buffer */
|
||||
a = *pIn2;
|
||||
b = *(pIn2 + 1);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
y1 = __PKHBT(a, b, 16);
|
||||
#else
|
||||
y1 = __PKHBT(b, a, 16);
|
||||
#endif
|
||||
|
||||
a = *(pIn2 + 2);
|
||||
b = *(pIn2 + 3);
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
y2 = __PKHBT(a, b, 16);
|
||||
#else
|
||||
y2 = __PKHBT(b, a, 16);
|
||||
#endif
|
||||
|
||||
acc0 = __SMLAD(x1, y1, acc0);
|
||||
|
||||
acc2 = __SMLAD(x2, y1, acc2);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x3 = __PKHBT(x2, x1, 0);
|
||||
#else
|
||||
x3 = __PKHBT(x1, x2, 0);
|
||||
#endif
|
||||
|
||||
acc1 = __SMLADX(x3, y1, acc1);
|
||||
|
||||
a = *pScr1;
|
||||
b = *(pScr1 + 1);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x1 = __PKHBT(a, b, 16);
|
||||
#else
|
||||
x1 = __PKHBT(b, a, 16);
|
||||
#endif
|
||||
|
||||
acc0 = __SMLAD(x2, y2, acc0);
|
||||
|
||||
acc2 = __SMLAD(x1, y2, acc2);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x3 = __PKHBT(x1, x2, 0);
|
||||
#else
|
||||
x3 = __PKHBT(x2, x1, 0);
|
||||
#endif
|
||||
|
||||
acc3 = __SMLADX(x3, y1, acc3);
|
||||
|
||||
acc1 = __SMLADX(x3, y2, acc1);
|
||||
|
||||
a = *(pScr1 + 2);
|
||||
b = *(pScr1 + 3);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x2 = __PKHBT(a, b, 16);
|
||||
#else
|
||||
x2 = __PKHBT(b, a, 16);
|
||||
#endif
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x3 = __PKHBT(x2, x1, 0);
|
||||
#else
|
||||
x3 = __PKHBT(x1, x2, 0);
|
||||
#endif
|
||||
|
||||
acc3 = __SMLADX(x3, y2, acc3);
|
||||
|
||||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
||||
|
||||
/* update scratch pointers */
|
||||
pIn2 += 4U;
|
||||
pScr1 += 4U;
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Update scratch pointer for remaining samples of smaller length sequence */
|
||||
pScr1 -= 4U;
|
||||
|
||||
/* apply same above for remaining samples of smaller length sequence */
|
||||
tapCnt = (srcBLen) & 3U;
|
||||
|
||||
while (tapCnt > 0U)
|
||||
{
|
||||
|
||||
/* accumlate the results */
|
||||
acc0 += (*pScr1++ * *pIn2);
|
||||
acc1 += (*pScr1++ * *pIn2);
|
||||
acc2 += (*pScr1++ * *pIn2);
|
||||
acc3 += (*pScr1++ * *pIn2++);
|
||||
|
||||
pScr1 -= 3U;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
blkCnt--;
|
||||
|
||||
|
||||
/* Store the results in the accumulators in the destination buffer. */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pOut)++ =
|
||||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
|
||||
|
||||
*__SIMD32(pOut)++ =
|
||||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
|
||||
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pOut)++ =
|
||||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
|
||||
|
||||
*__SIMD32(pOut)++ =
|
||||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
|
||||
|
||||
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = py;
|
||||
|
||||
pScratch1 += 4U;
|
||||
|
||||
}
|
||||
|
||||
|
||||
blkCnt = (srcALen + srcBLen - 1U) & 0x3;
|
||||
|
||||
/* Calculate convolution for remaining samples of Bigger length sequence */
|
||||
while (blkCnt > 0)
|
||||
{
|
||||
/* Initialze temporary scratch pointer as scratch1 */
|
||||
pScr1 = pScratch1;
|
||||
|
||||
/* Clear Accumlators */
|
||||
acc0 = 0;
|
||||
|
||||
tapCnt = (srcBLen) >> 1U;
|
||||
|
||||
while (tapCnt > 0U)
|
||||
{
|
||||
|
||||
acc0 += (*pScr1++ * *pIn2++);
|
||||
acc0 += (*pScr1++ * *pIn2++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
tapCnt = (srcBLen) & 1U;
|
||||
|
||||
/* apply same above for remaining samples of smaller length sequence */
|
||||
while (tapCnt > 0U)
|
||||
{
|
||||
|
||||
/* accumlate the results */
|
||||
acc0 += (*pScr1++ * *pIn2++);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
blkCnt--;
|
||||
|
||||
/* The result is in 2.30 format. Convert to 1.15 with saturation.
|
||||
** Then store the output in the destination buffer. */
|
||||
*pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = py;
|
||||
|
||||
pScratch1 += 1U;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Conv group
|
||||
*/
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,565 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_conv_fast_q31.c
|
||||
* Description: Fast Q31 Convolution
|
||||
*
|
||||
* $Date: 27. January 2017
|
||||
* $Revision: V.1.5.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Conv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @param[in] *pSrcA points to the first input sequence.
|
||||
* @param[in] srcALen length of the first input sequence.
|
||||
* @param[in] *pSrcB points to the second input sequence.
|
||||
* @param[in] srcBLen length of the second input sequence.
|
||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
||||
* @return none.
|
||||
*
|
||||
* @details
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
*
|
||||
* \par
|
||||
* This function is optimized for speed at the expense of fixed-point precision and overflow protection.
|
||||
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
|
||||
* These intermediate results are accumulated in a 32-bit register in 2.30 format.
|
||||
* Finally, the accumulator is saturated and converted to a 1.31 result.
|
||||
*
|
||||
* \par
|
||||
* The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result.
|
||||
* In order to avoid overflows completely the input signals must be scaled down.
|
||||
* Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
|
||||
* as maximum of min(srcALen, srcBLen) number of additions are carried internally.
|
||||
*
|
||||
* \par
|
||||
* See <code>arm_conv_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision.
|
||||
*/
|
||||
|
||||
void arm_conv_fast_q31(
|
||||
q31_t * pSrcA,
|
||||
uint32_t srcALen,
|
||||
q31_t * pSrcB,
|
||||
uint32_t srcBLen,
|
||||
q31_t * pDst)
|
||||
{
|
||||
q31_t *pIn1; /* inputA pointer */
|
||||
q31_t *pIn2; /* inputB pointer */
|
||||
q31_t *pOut = pDst; /* output pointer */
|
||||
q31_t *px; /* Intermediate inputA pointer */
|
||||
q31_t *py; /* Intermediate inputB pointer */
|
||||
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
|
||||
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
|
||||
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
|
||||
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
|
||||
|
||||
/* The algorithm implementation is based on the lengths of the inputs. */
|
||||
/* srcB is always made to slide across srcA. */
|
||||
/* So srcBLen is always considered as shorter or equal to srcALen */
|
||||
if (srcALen >= srcBLen)
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcA;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcB;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcB;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcA;
|
||||
|
||||
/* srcBLen is always considered as shorter or equal to srcALen */
|
||||
j = srcBLen;
|
||||
srcBLen = srcALen;
|
||||
srcALen = j;
|
||||
}
|
||||
|
||||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
|
||||
/* The function is internally
|
||||
* divided into three stages according to the number of multiplications that has to be
|
||||
* taken place between inputA samples and inputB samples. In the first stage of the
|
||||
* algorithm, the multiplications increase by one for every iteration.
|
||||
* In the second stage of the algorithm, srcBLen number of multiplications are done.
|
||||
* In the third stage of the algorithm, the multiplications decrease by one
|
||||
* for every iteration. */
|
||||
|
||||
/* The algorithm is implemented in three stages.
|
||||
The loop counters of each stage is initiated here. */
|
||||
blockSize1 = srcBLen - 1U;
|
||||
blockSize2 = srcALen - (srcBLen - 1U);
|
||||
blockSize3 = blockSize1;
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage1
|
||||
* -------------------------*/
|
||||
|
||||
/* sum = x[0] * y[0]
|
||||
* sum = x[0] * y[1] + x[1] * y[0]
|
||||
* ....
|
||||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are increased by 1 for every iteration.
|
||||
The count variable holds the number of MAC operations performed */
|
||||
count = 1U;
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
py = pIn2;
|
||||
|
||||
|
||||
/* ------------------------
|
||||
* Stage1 process
|
||||
* ----------------------*/
|
||||
|
||||
/* The first stage starts here */
|
||||
while (blockSize1 > 0U)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = count >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* x[0] * y[srcBLen - 1] */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* x[1] * y[srcBLen - 2] */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* x[2] * y[srcBLen - 3] */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* x[3] * y[srcBLen - 4] */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the count is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = count % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum << 1;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
py = pIn2 + count;
|
||||
px = pIn1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize1--;
|
||||
}
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage2
|
||||
* ------------------------*/
|
||||
|
||||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
|
||||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
|
||||
* ....
|
||||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
|
||||
*/
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1U);
|
||||
py = pSrc2;
|
||||
|
||||
/* count is index by which the pointer pIn1 to be incremented */
|
||||
count = 0U;
|
||||
|
||||
/* -------------------
|
||||
* Stage2 process
|
||||
* ------------------*/
|
||||
|
||||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
|
||||
* So, to loop unroll over blockSize2,
|
||||
* srcBLen should be greater than or equal to 4 */
|
||||
if (srcBLen >= 4U)
|
||||
{
|
||||
/* Loop unroll over blockSize2, by 4 */
|
||||
blkCnt = blockSize2 >> 2U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
acc3 = 0;
|
||||
|
||||
/* read x[0], x[1], x[2] samples */
|
||||
x0 = *(px++);
|
||||
x1 = *(px++);
|
||||
x2 = *(px++);
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
do
|
||||
{
|
||||
/* Read y[srcBLen - 1] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[3] sample */
|
||||
x3 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[0] * y[srcBLen - 1] */
|
||||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
|
||||
|
||||
/* acc1 += x[1] * y[srcBLen - 1] */
|
||||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
|
||||
|
||||
/* acc2 += x[2] * y[srcBLen - 1] */
|
||||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
|
||||
|
||||
/* acc3 += x[3] * y[srcBLen - 1] */
|
||||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
|
||||
|
||||
/* Read y[srcBLen - 2] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[4] sample */
|
||||
x0 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
/* acc0 += x[1] * y[srcBLen - 2] */
|
||||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
|
||||
/* acc1 += x[2] * y[srcBLen - 2] */
|
||||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
|
||||
/* acc2 += x[3] * y[srcBLen - 2] */
|
||||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
|
||||
/* acc3 += x[4] * y[srcBLen - 2] */
|
||||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
|
||||
|
||||
/* Read y[srcBLen - 3] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[5] sample */
|
||||
x1 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[2] * y[srcBLen - 3] */
|
||||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
|
||||
/* acc1 += x[3] * y[srcBLen - 3] */
|
||||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
|
||||
/* acc2 += x[4] * y[srcBLen - 3] */
|
||||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
|
||||
/* acc3 += x[5] * y[srcBLen - 3] */
|
||||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
|
||||
|
||||
/* Read y[srcBLen - 4] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[6] sample */
|
||||
x2 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[3] * y[srcBLen - 4] */
|
||||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
|
||||
/* acc1 += x[4] * y[srcBLen - 4] */
|
||||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
|
||||
/* acc2 += x[5] * y[srcBLen - 4] */
|
||||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
|
||||
/* acc3 += x[6] * y[srcBLen - 4] */
|
||||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
|
||||
|
||||
|
||||
} while (--k);
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Read y[srcBLen - 5] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[7] sample */
|
||||
x3 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[4] * y[srcBLen - 5] */
|
||||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
|
||||
/* acc1 += x[5] * y[srcBLen - 5] */
|
||||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
|
||||
/* acc2 += x[6] * y[srcBLen - 5] */
|
||||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
|
||||
/* acc3 += x[7] * y[srcBLen - 5] */
|
||||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
|
||||
|
||||
/* Reuse the present samples for the next MAC */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
x2 = x3;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the results in the accumulators in the destination buffer. */
|
||||
*pOut++ = (q31_t) (acc0 << 1);
|
||||
*pOut++ = (q31_t) (acc1 << 1);
|
||||
*pOut++ = (q31_t) (acc2 << 1);
|
||||
*pOut++ = (q31_t) (acc3 << 1);
|
||||
|
||||
/* Increment the pointer pIn1 index, count by 4 */
|
||||
count += 4U;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize2 % 0x4U;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum << 1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the srcBLen is not a multiple of 4,
|
||||
* the blockSize2 loop cannot be unrolled by 4 */
|
||||
blkCnt = blockSize2;
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* srcBLen number of MACS should be performed */
|
||||
k = srcBLen;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum << 1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage3
|
||||
* -------------------------*/
|
||||
|
||||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
|
||||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
|
||||
* ....
|
||||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
|
||||
* sum += x[srcALen-1] * y[srcBLen-1]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are decreased by 1 for every iteration.
|
||||
The blockSize3 variable holds the number of MAC operations performed */
|
||||
|
||||
/* Working pointer of inputA */
|
||||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
|
||||
px = pSrc1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1U);
|
||||
py = pSrc2;
|
||||
|
||||
/* -------------------
|
||||
* Stage3 process
|
||||
* ------------------*/
|
||||
|
||||
while (blockSize3 > 0U)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = blockSize3 >> 2U;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while (k > 0U)
|
||||
{
|
||||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = blockSize3 % 0x4U;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum = (q31_t) ((((q63_t) sum << 32) +
|
||||
((q63_t) * px++ * (*py--))) >> 32);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum << 1;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = ++pSrc1;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize3--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Conv group
|
||||
*/
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue