更改了宏定义的文件

This commit is contained in:
NeoZng 2022-12-05 15:03:45 +08:00
parent 8e7935876e
commit 3c8ffda61d
8 changed files with 70 additions and 61 deletions

View File

@ -35,7 +35,8 @@
"compare": "c", "compare": "c",
"*.tcc": "c", "*.tcc": "c",
"type_traits": "c", "type_traits": "c",
"typeinfo": "c" "typeinfo": "c",
"general_def.h": "c"
}, },
"C_Cpp.default.configurationProvider": "ms-vscode.makefile-tools", "C_Cpp.default.configurationProvider": "ms-vscode.makefile-tools",
} }

View File

@ -18,18 +18,12 @@
#include "message_center.h" #include "message_center.h"
#include "referee.h" #include "referee.h"
#include "general_def.h" #include "general_def.h"
#include "bsp_dwt.h"
#include "arm_math.h" #include "arm_math.h"
/* 需要根据机器人底盘修改的参数,单位为mm(毫米) */
#define WHEEL_BASE 300 // 纵向轴距(前进后退方向)
#define TRACK_WIDTH 300 // 横向轮距(左右平移方向)
#define CENTER_GIMBAL_OFFSET_X 0 // 云台旋转中心距底盘几何中心的距离,前后方向,云台位于正中心时默认设为0
#define CENTER_GIMBAL_OFFSET_Y 0 // 云台旋转中心距底盘几何中心的距离,左右方向,云台位于正中心时默认设为0
#define RADIUS_WHEEL 60 // 轮子半径
#define REDUCTION_RATIO 19.0f // 电机减速比,因为编码器量测的是转子的速度而不是输出轴的速度故需进行转换
/* 自动计算的参数 */ /* 根据robot_def.h中的macro自动计算的参数 */
#define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f) #define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f)
#define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f) #define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f)
#define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI) #define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI)
@ -54,6 +48,9 @@ static Chassis_Ctrl_Cmd_s chassis_cmd_recv;
static Subscriber_t *chassis_sub; static Subscriber_t *chassis_sub;
static Chassis_Upload_Data_s chassis_feedback_data; static Chassis_Upload_Data_s chassis_feedback_data;
/* 用于自旋变速策略的时间变量,后续考虑查表加速 */
static float t;
/* 私有函数计算的中介变量,设为静态避免参数传递的开销 */ /* 私有函数计算的中介变量,设为静态避免参数传递的开销 */
static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘 static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘
static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅 static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅
@ -173,8 +170,8 @@ static void MecanumCalculate()
{ {
vt_lf = -chassis_vx - chassis_vy - chassis_cmd_recv.wz * LF_CENTER; vt_lf = -chassis_vx - chassis_vy - chassis_cmd_recv.wz * LF_CENTER;
vt_rf = -chassis_vx + chassis_vy - chassis_cmd_recv.wz * RF_CENTER; vt_rf = -chassis_vx + chassis_vy - chassis_cmd_recv.wz * RF_CENTER;
vt_lb = chassis_vx + chassis_vy - chassis_cmd_recv.wz * LB_CENTER; vt_lb = chassis_vx + chassis_vy - chassis_cmd_recv.wz * LB_CENTER;
vt_rb = chassis_vx - chassis_vy - chassis_cmd_recv.wz * RB_CENTER; vt_rb = chassis_vx - chassis_vy - chassis_cmd_recv.wz * RB_CENTER;
} }
/** /**
@ -215,31 +212,31 @@ void ChassisTask()
// 后续增加不同状态的过渡模式? // 后续增加不同状态的过渡模式?
switch (chassis_cmd_recv.chassis_mode) switch (chassis_cmd_recv.chassis_mode)
{ {
case CHASSIS_NO_FOLLOW:
chassis_cmd_recv.wz = 0; // 云台任意移动模式,不旋转,一般用于调整云台姿态
break;
case CHASSIS_FOLLOW_GIMBAL_YAW:
chassis_cmd_recv.wz = 0.05f * powf(chassis_cmd_recv.wz, 2.0f); // 跟随,不开pid,以误差角平方为输出
break;
case CHASSIS_ROTATE:
// chassis_cmd_recv.wz // 当前维持定值,后续增加不规则的变速策略
break;
case CHASSIS_ZERO_FORCE: case CHASSIS_ZERO_FORCE:
DJIMotorStop(motor_lf); // 如果出现重要模块离线或遥控器设置为急停,让电机停止 DJIMotorStop(motor_lf); // 如果出现重要模块离线或遥控器设置为急停,让电机停止
DJIMotorStop(motor_rf); DJIMotorStop(motor_rf);
DJIMotorStop(motor_lb); DJIMotorStop(motor_lb);
DJIMotorStop(motor_rb); DJIMotorStop(motor_rb);
break; break;
case CHASSIS_NO_FOLLOW:
chassis_cmd_recv.wz = 0; // 底盘不旋转,但维持全向机动,一般用于调整云台姿态
break;
case CHASSIS_FOLLOW_GIMBAL_YAW:
chassis_cmd_recv.wz = 0.05f * powf(chassis_cmd_recv.wz, 2.0f); // 跟随,不单独设置pid,以误差角平方为速度输出
break;
case CHASSIS_ROTATE:
// chassis_cmd_recv.wz=sin(t) // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
break;
default: default:
break; break;
} }
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上 // 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东) // 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
chassis_vx = chassis_cmd_recv.vx * arm_cos_f32(chassis_cmd_recv.offset_angle) - chassis_vx = chassis_cmd_recv.vx * arm_cos_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD) -
chassis_cmd_recv.vy * arm_sin_f32(chassis_cmd_recv.offset_angle); chassis_cmd_recv.vy * arm_sin_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD);
chassis_vy = chassis_cmd_recv.vx * arm_sin_f32(chassis_cmd_recv.offset_angle) - chassis_vy = chassis_cmd_recv.vx * arm_sin_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD) -
chassis_cmd_recv.vy * arm_cos_f32(chassis_cmd_recv.offset_angle); chassis_cmd_recv.vy * arm_cos_f32(chassis_cmd_recv.offset_angle * ANGLE_2_RAD);
// 根据控制模式进行正运动学解算,计算底盘输出 // 根据控制模式进行正运动学解算,计算底盘输出
MecanumCalculate(); MecanumCalculate();
@ -251,8 +248,9 @@ void ChassisTask()
EstimateSpeed(); EstimateSpeed();
// 获取裁判系统数据 // 获取裁判系统数据
// 我方颜色id小于7是红色,大于7是蓝色,注意这里发送的是对方的颜色, 0:blue , 1:red // 我方颜色id小于7是红色,大于7是蓝色,注意这里发送的是对方的颜色, 0:blue , 1:red
chassis_feedback_data.enemy_color = referee_data->GameRobotStat.robot_id > 7 ? 1 : 0; // chassis_feedback_data.enemy_color = referee_data->GameRobotStat.robot_id > 7 ? 1 : 0;
// 当前只做了17mm的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况
chassis_feedback_data.bullet_speed = referee_data->GameRobotStat.shooter_id1_17mm_speed_limit; chassis_feedback_data.bullet_speed = referee_data->GameRobotStat.shooter_id1_17mm_speed_limit;
chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0; chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0;

View File

@ -5,13 +5,9 @@
#include "message_center.h" #include "message_center.h"
#include "general_def.h" #include "general_def.h"
/* 根据每个机器人进行设定,若对云台有改动需要修改 */
#define YAW_CHASSIS_ALIGN_ECD 0 // 云台和底盘对齐指向相同方向时的电机编码器值
#define PITCH_HORIZON_ECD 0 // 云台处于水平位置时编码器值
// 自动将编码器转换成角度值 // 自动将编码器转换成角度值
#define YAW_CHASSIS_ALIGN_ANGLE #define YAW_CHASSIS_ALIGN_ANGLE (YAW_CHASSIS_ALIGN_ECD * ECD_ANGLE_COEF)
#define PTICH_HORIZON_ALIGN_ANGLE #define PTICH_HORIZON_ALIGN_ANGLE (PITCH_HORIZON_ECD * ECD_ANGLE_COEF)
static attitude_t *Gimbal_IMU_data; // 云台IMU数据 static attitude_t *Gimbal_IMU_data; // 云台IMU数据
static dji_motor_instance *yaw_motor; // yaw电机 static dji_motor_instance *yaw_motor; // yaw电机
@ -81,6 +77,7 @@ void GimbalInit()
}, },
.motor_type = GM6020}; .motor_type = GM6020};
// 电机对total_angle闭环,上电时为零,会保持静止,收到遥控器数据再动
yaw_motor = DJIMotorInit(&yaw_config); yaw_motor = DJIMotorInit(&yaw_config);
pitch_motor = DJIMotorInit(&pitch_config); pitch_motor = DJIMotorInit(&pitch_config);
@ -104,29 +101,31 @@ void GimbalTask()
SubGetMessage(gimbal_sub, &gimbal_cmd_recv); SubGetMessage(gimbal_sub, &gimbal_cmd_recv);
// 根据控制模式进行电机反馈切换和过渡,视觉模式在robot_cmd模块就已经设置好,gimbal只看yaw_ref和pitch_ref // 根据控制模式进行电机反馈切换和过渡,视觉模式在robot_cmd模块就已经设置好,gimbal只看yaw_ref和pitch_ref
// 是否要增加不同模式之间的过渡? // 是否要增加不同模式之间的过渡?
switch (gimbal_cmd_recv.gimbal_mode) switch (gimbal_cmd_recv.gimbal_mode)
{ {
// 停止
case GIMBAL_ZERO_FORCE: case GIMBAL_ZERO_FORCE:
DJIMotorStop(yaw_motor); DJIMotorStop(yaw_motor);
DJIMotorStop(pitch_motor); DJIMotorStop(pitch_motor);
break; break;
// 使用陀螺仪的反馈,底盘根据yaw电机的offset跟随云台或视觉模式采用
case GIMBAL_GYRO_MODE: case GIMBAL_GYRO_MODE:
DJIMotorChangeFeed(yaw_motor, ANGLE_LOOP, OTHER_FEED); DJIMotorChangeFeed(yaw_motor, ANGLE_LOOP, OTHER_FEED);
DJIMotorChangeFeed(yaw_motor, SPEED_LOOP, OTHER_FEED); DJIMotorChangeFeed(yaw_motor, SPEED_LOOP, OTHER_FEED);
DJIMotorChangeFeed(pitch_motor, ANGLE_LOOP, OTHER_FEED); DJIMotorChangeFeed(pitch_motor, ANGLE_LOOP, OTHER_FEED);
DJIMotorChangeFeed(pitch_motor, SPEED_LOOP, OTHER_FEED); DJIMotorChangeFeed(pitch_motor, SPEED_LOOP, OTHER_FEED);
DJIMotorSetRef(yaw_motor, gimbal_cmd_recv.yaw); DJIMotorSetRef(yaw_motor, gimbal_cmd_recv.yaw); // yaw和pitch会在robot_cmd中处理好多圈和单圈
DJIMotorSetRef(pitch_motor, gimbal_cmd_recv.pitch); DJIMotorSetRef(pitch_motor, gimbal_cmd_recv.pitch);
break; break;
// 是否考虑直接让云台和底盘重合,其他模式都使用陀螺仪反馈? // 云台自由模式,使用编码器反馈,底盘和云台分离,仅云台旋转,一般用于调整云台姿态(英雄吊射等)/能量机关
case GIMBAL_FREE_MODE: case GIMBAL_FREE_MODE:
DJIMotorChangeFeed(yaw_motor, ANGLE_LOOP, MOTOR_FEED); DJIMotorChangeFeed(yaw_motor, ANGLE_LOOP, MOTOR_FEED);
DJIMotorChangeFeed(yaw_motor, SPEED_LOOP, MOTOR_FEED); DJIMotorChangeFeed(yaw_motor, SPEED_LOOP, MOTOR_FEED);
DJIMotorChangeFeed(pitch_motor, ANGLE_LOOP, MOTOR_FEED); DJIMotorChangeFeed(pitch_motor, ANGLE_LOOP, MOTOR_FEED);
DJIMotorChangeFeed(pitch_motor, SPEED_LOOP, MOTOR_FEED); DJIMotorChangeFeed(pitch_motor, SPEED_LOOP, MOTOR_FEED);
DJIMotorSetRef(yaw_motor, YAW_ALIGN_ECD); DJIMotorSetRef(yaw_motor, gimbal_cmd_recv.yaw); // yaw和pitch会在robot_cmd中处理好多圈和单圈
DJIMotorSetRef(pitch_motor, PITCH_HORIZON_ECD); DJIMotorSetRef(pitch_motor, gimbal_cmd_recv.pitch);
break; break;
default: default:
break; break;
@ -146,9 +145,9 @@ void GimbalTask()
} }
*/ */
// 获取反馈数据 // 设置反馈数据
gimbal_feedback_data.gimbal_imu_data = *Gimbal_IMU_data; gimbal_feedback_data.gimbal_imu_data = *Gimbal_IMU_data;
gimbal_feedback_data.yaw_motor_ecd = pitch_motor->motor_measure.ecd; gimbal_feedback_data.yaw_motor_single_round_angle = pitch_motor->motor_measure.angle_single_round;
// 推送消息 // 推送消息
PubPushMessage(gimbal_pub, &gimbal_feedback_data); PubPushMessage(gimbal_pub, &gimbal_feedback_data);

View File

@ -23,7 +23,21 @@
// #define GIMBAL_BOARD //云台板 // #define GIMBAL_BOARD //云台板
/* 重要参数定义,注意根据不同机器人进行修改 */ /* 重要参数定义,注意根据不同机器人进行修改 */
#define YAW_MID_ECD // 云台参数
#define YAW_CHASSIS_ALIGN_ECD 0 // 云台和底盘对齐指向相同方向时的电机编码器值,若对云台有机械改动需要修改
#define PITCH_HORIZON_ECD 0 // 云台处于水平位置时编码器值,若对云台有机械改动需要修改
// 发射参数
#define ONE_BULLET_DELTA_ANGLE 0 // 发射一发弹丸拨盘转动的距离,由机械设计图纸给出
#define REDUCTION_RATIO_LOADER 49.0f // 拨盘电机的减速比,英雄需要修改为3508的19.0f
#define NUM_PER_CIRCLE 1 // 拨盘一圈的装载量
// 机器人底盘修改的参数,单位为mm(毫米)
#define WHEEL_BASE 300 // 纵向轴距(前进后退方向)
#define TRACK_WIDTH 300 // 横向轮距(左右平移方向)
#define CENTER_GIMBAL_OFFSET_X 0 // 云台旋转中心距底盘几何中心的距离,前后方向,云台位于正中心时默认设为0
#define CENTER_GIMBAL_OFFSET_Y 0 // 云台旋转中心距底盘几何中心的距离,左右方向,云台位于正中心时默认设为0
#define RADIUS_WHEEL 60 // 轮子半径
#define REDUCTION_RATIO_WHEEL 19.0f // 电机减速比,因为编码器量测的是转子的速度而不是输出轴的速度故需进行转换
#if (defined(ONE_BOARD) && defined(CHASSIS_BOARD)) || \ #if (defined(ONE_BOARD) && defined(CHASSIS_BOARD)) || \
(defined(ONE_BOARD) && defined(GIMBAL_BOARD)) || \ (defined(ONE_BOARD) && defined(GIMBAL_BOARD)) || \
@ -129,13 +143,13 @@ typedef struct
// cmd发布的发射控制数据,由shoot订阅 // cmd发布的发射控制数据,由shoot订阅
typedef struct typedef struct
{ {
loader_mode_e load_mode; loader_mode_e load_mode;
lid_mode_e lid_mode; lid_mode_e lid_mode;
shoot_mode_e shoot_mode; shoot_mode_e shoot_mode;
Bullet_Speed_e bullet_speed; // 弹速枚举 Bullet_Speed_e bullet_speed; // 弹速枚举
uint8_t rest_heat; uint8_t rest_heat;
float shoot_rate; //连续发射的射频,unit per s,发/秒 float shoot_rate; // 连续发射的射频,unit per s,发/秒
} Shoot_Ctrl_Cmd_s; } Shoot_Ctrl_Cmd_s;
/* ----------------gimbal/shoot/chassis发布的反馈数据----------------*/ /* ----------------gimbal/shoot/chassis发布的反馈数据----------------*/
@ -166,7 +180,7 @@ typedef struct
typedef struct typedef struct
{ {
attitude_t gimbal_imu_data; attitude_t gimbal_imu_data;
uint16_t yaw_motor_ecd; uint16_t yaw_motor_single_round_angle;
} Gimbal_Upload_Data_s; } Gimbal_Upload_Data_s;
typedef struct typedef struct

View File

@ -5,9 +5,6 @@
#include "bsp_dwt.h" #include "bsp_dwt.h"
#include "general_def.h" #include "general_def.h"
#define ONE_BULLET_DELTA_ANGLE 0 // 发射一发弹丸拨盘转动的距离,由机械设计图纸给出
#define REDUCTION_RATIO 49.0f // 拨盘电机的减速比,英雄需要修改为3508的19.0f
#define NUM_PER_CIRCLE 1 // 拨盘一圈的装载量
/* 对于双发射机构的机器人,将下面的数据封装成结构体即可,生成两份shoot应用实例 */ /* 对于双发射机构的机器人,将下面的数据封装成结构体即可,生成两份shoot应用实例 */
static dji_motor_instance *friction_l; // 左摩擦轮 static dji_motor_instance *friction_l; // 左摩擦轮
@ -137,7 +134,7 @@ void ShootTask()
if (hibernate_time + dead_time > DWT_GetTimeline_ms()) if (hibernate_time + dead_time > DWT_GetTimeline_ms())
return; return;
// 若不在休眠状态,根据控制模式进行电机参考值设定和模式切换 // 若不在休眠状态,根据控制模式进行拨盘电机参考值设定和模式切换
switch (shoot_cmd_recv.load_mode) switch (shoot_cmd_recv.load_mode)
{ {
// 停止拨盘 // 停止拨盘
@ -162,7 +159,7 @@ void ShootTask()
// 连发模式,对速度闭环,射频后续修改为可变 // 连发模式,对速度闭环,射频后续修改为可变
case LOAD_BURSTFIRE: case LOAD_BURSTFIRE:
DJIMotorOuterLoop(loader, SPEED_LOOP); DJIMotorOuterLoop(loader, SPEED_LOOP);
DJIMotorSetRef(loader, shoot_cmd_recv.shoot_rate * 360 * REDUCTION_RATIO / NUM_PER_CIRCLE); DJIMotorSetRef(loader, shoot_cmd_recv.shoot_rate * 360 * REDUCTION_RATIO_WHEEL / NUM_PER_CIRCLE);
// x颗/秒换算成速度: 已知一圈的载弹量,由此计算出1s需要转的角度,注意换算角速度 // x颗/秒换算成速度: 已知一圈的载弹量,由此计算出1s需要转的角度,注意换算角速度
break; break;
// 拨盘反转,对速度闭环,后续增加卡弹检测(通过裁判系统剩余热量反馈) // 拨盘反转,对速度闭环,后续增加卡弹检测(通过裁判系统剩余热量反馈)
@ -175,7 +172,7 @@ void ShootTask()
break; break;
} }
// 根据收到的弹速设置设定摩擦轮参考值,需实测后填入 // 根据收到的弹速设置设定摩擦轮电机参考值,需实测后填入
switch (shoot_cmd_recv.bullet_speed) switch (shoot_cmd_recv.bullet_speed)
{ {
case SMALL_AMU_15: case SMALL_AMU_15:

View File

@ -1,8 +1,6 @@
#include "dji_motor.h" #include "dji_motor.h"
#include "general_def.h" #include "general_def.h"
#define ECD_ANGLE_COEF 0.043945f // 360/8192,将编码器值转化为角度制
static uint8_t idx = 0; // register idx,是该文件的全局电机索引,在注册时使用 static uint8_t idx = 0; // register idx,是该文件的全局电机索引,在注册时使用
/* DJI电机的实例,此处仅保存指针,内存的分配将通过电机实例初始化时通过malloc()进行 */ /* DJI电机的实例,此处仅保存指针,内存的分配将通过电机实例初始化时通过malloc()进行 */
@ -134,19 +132,19 @@ static void DecodeDJIMotor(can_instance *_instance)
// resolve data and apply filter to current and speed // resolve data and apply filter to current and speed
measure->last_ecd = measure->ecd; measure->last_ecd = measure->ecd;
measure->ecd = (uint16_t)(rxbuff[0] << 8 | rxbuff[1]); measure->ecd = (uint16_t)(rxbuff[0] << 8 | rxbuff[1]);
measure->angle_single_round = ECD_ANGLE_COEF* measure->ecd; measure->angle_single_round = ECD_ANGLE_COEF * measure->ecd;
measure->speed_angle_per_sec = (1 - SPEED_SMOOTH_COEF) * measure->speed_angle_per_sec + measure->speed_angle_per_sec = (1 - SPEED_SMOOTH_COEF) * measure->speed_angle_per_sec +
RPM_2_ANGLE_PER_SEC * SPEED_SMOOTH_COEF * (int16_t)(rxbuff[2] << 8 | rxbuff[3]); RPM_2_ANGLE_PER_SEC * SPEED_SMOOTH_COEF * (int16_t)(rxbuff[2] << 8 | rxbuff[3]);
measure->given_current = (1 - CURRENT_SMOOTH_COEF) * measure->given_current + measure->given_current = (1 - CURRENT_SMOOTH_COEF) * measure->given_current +
RPM_2_ANGLE_PER_SEC * CURRENT_SMOOTH_COEF * (uint16_t)(rxbuff[4] << 8 | rxbuff[5]); RPM_2_ANGLE_PER_SEC * CURRENT_SMOOTH_COEF * (uint16_t)(rxbuff[4] << 8 | rxbuff[5]);
measure->temperate = rxbuff[6]; measure->temperate = rxbuff[6];
// multi rounds calc,计算的前提是两次采样间电机转过的角度小于180° // multi rounds calc,计算的前提是两次采样间电机转过的角度小于180°
if (measure->ecd - measure->last_ecd > 4096) if (measure->ecd - measure->last_ecd > 4096)
measure->total_round--; measure->total_round--;
else if (measure->ecd - measure->last_ecd < -4096) else if (measure->ecd - measure->last_ecd < -4096)
measure->total_round++; measure->total_round++;
measure->total_angle = measure->total_round * 360 + measure->angle_single_round; measure->total_angle = measure->total_round * 360 + measure->angle_single_round;
break; break;
} }
} }
@ -168,7 +166,7 @@ dji_motor_instance *DJIMotorInit(Motor_Init_Config_s *config)
PID_Init(&dji_motor_info[idx]->motor_controller.angle_PID, &config->controller_param_init_config.angle_PID); PID_Init(&dji_motor_info[idx]->motor_controller.angle_PID, &config->controller_param_init_config.angle_PID);
dji_motor_info[idx]->motor_controller.other_angle_feedback_ptr = config->controller_param_init_config.other_angle_feedback_ptr; dji_motor_info[idx]->motor_controller.other_angle_feedback_ptr = config->controller_param_init_config.other_angle_feedback_ptr;
dji_motor_info[idx]->motor_controller.other_speed_feedback_ptr = config->controller_param_init_config.other_speed_feedback_ptr; dji_motor_info[idx]->motor_controller.other_speed_feedback_ptr = config->controller_param_init_config.other_speed_feedback_ptr;
// group motors, because 4 motors share the same CAN control message // group motors, because 4 motors share the same CAN control message
MotorSenderGrouping(&config->can_init_config); MotorSenderGrouping(&config->can_init_config);
@ -251,13 +249,13 @@ void DJIMotorControl()
{ {
if (motor_setting->speed_feedback_source == OTHER_FEED) if (motor_setting->speed_feedback_source == OTHER_FEED)
pid_measure = *motor_controller->other_speed_feedback_ptr; pid_measure = *motor_controller->other_speed_feedback_ptr;
else else // MOTOR_FEED
pid_measure = motor_measure->speed_angle_per_sec; pid_measure = motor_measure->speed_angle_per_sec;
// 更新pid_ref进入下一个环 // 更新pid_ref进入下一个环
motor_controller->pid_ref = PID_Calculate(&motor_controller->speed_PID, pid_measure, motor_controller->pid_ref); motor_controller->pid_ref = PID_Calculate(&motor_controller->speed_PID, pid_measure, motor_controller->pid_ref);
} }
// 计算电流环,只要启用了电流环就计算,不管外层闭环是什么,并且电流只有电机自身的反馈 // 计算电流环,只要启用了电流环就计算,不管外层闭环是什么,并且电流只有电机自身传感器的反馈
if (motor_setting->close_loop_type & CURRENT_LOOP) if (motor_setting->close_loop_type & CURRENT_LOOP)
{ {
motor_controller->pid_ref = PID_Calculate(&motor_controller->current_PID, motor_measure->given_current, motor_controller->pid_ref); motor_controller->pid_ref = PID_Calculate(&motor_controller->current_PID, motor_measure->given_current, motor_controller->pid_ref);

View File

@ -24,6 +24,8 @@
/* 滤波系数设置为1的时候即关闭滤波 */ /* 滤波系数设置为1的时候即关闭滤波 */
#define SPEED_SMOOTH_COEF 0.9f // better to be greater than 0.85 #define SPEED_SMOOTH_COEF 0.9f // better to be greater than 0.85
#define CURRENT_SMOOTH_COEF 0.98f // this coef *must* be greater than 0.95 #define CURRENT_SMOOTH_COEF 0.98f // this coef *must* be greater than 0.95
#define ECD_ANGLE_COEF 0.043945f // 360/8192,将编码器值转化为角度制
/* DJI电机CAN反馈信息*/ /* DJI电机CAN反馈信息*/
typedef struct typedef struct

View File

@ -37,8 +37,8 @@ typedef enum
/* 反馈来源设定,若设为OTHER_FEED则需要指定数据来源指针,详见Motor_Controller_s*/ /* 反馈来源设定,若设为OTHER_FEED则需要指定数据来源指针,详见Motor_Controller_s*/
typedef enum typedef enum
{ {
MOTOR_FEED = 0, MOTOR_FEED,
OTHER_FEED = 1 OTHER_FEED,
} Feedback_Source_e; } Feedback_Source_e;
/* 电机正反转标志 */ /* 电机正反转标志 */