增加了LK电机和HT电机的基本支持,待编写控制

This commit is contained in:
NeoZng 2022-12-13 19:40:03 +08:00
parent 2f41e67de0
commit 11329aaddb
21 changed files with 280 additions and 171 deletions

View File

@ -41,7 +41,8 @@
"motor_def.h": "c", "motor_def.h": "c",
"quaternionekf.h": "c", "quaternionekf.h": "c",
"shoot.h": "c", "shoot.h": "c",
"lk9025.h": "c" "lk9025.h": "c",
"ht04.h": "c"
}, },
"C_Cpp.default.configurationProvider": "ms-vscode.makefile-tools", "C_Cpp.default.configurationProvider": "ms-vscode.makefile-tools",
} }

View File

@ -8,8 +8,8 @@
#include "dji_motor.h" #include "dji_motor.h"
// 私有宏,自动将编码器转换成角度值 // 私有宏,自动将编码器转换成角度值
#define YAW_ALIGN_ANGLE (YAW_CHASSIS_ALIGN_ECD * ECD_ANGLE_COEF) #define YAW_ALIGN_ANGLE (YAW_CHASSIS_ALIGN_ECD * ECD_ANGLE_COEF_DJI)
#define PTICH_HORIZON_ANGLE (PITCH_HORIZON_ECD * ECD_ANGLE_COEF) #define PTICH_HORIZON_ANGLE (PITCH_HORIZON_ECD * ECD_ANGLE_COEF_DJI)
/* gimbal_cmd应用包含的模块实例指针和交互信息存储*/ /* gimbal_cmd应用包含的模块实例指针和交互信息存储*/
#ifdef GIMBAL_BOARD // 对双板的兼容,条件编译 #ifdef GIMBAL_BOARD // 对双板的兼容,条件编译

View File

@ -115,7 +115,7 @@ static void CANFIFOxCallback(CAN_HandleTypeDef *_hcan, uint32_t fifox)
uint8_t can_rx_buff[8]; uint8_t can_rx_buff[8];
CAN_RxHeaderTypeDef rxconf; CAN_RxHeaderTypeDef rxconf;
HAL_CAN_GetRxMessage(_hcan, fifox, &rxconf, can_rx_buff); HAL_CAN_GetRxMessage(_hcan, fifox, &rxconf, can_rx_buff);
for (size_t i = 0; i < MX_REGISTER_DEVICE_CNT; i++) for (size_t i = 0; i < MX_REGISTER_DEVICE_CNT; ++i)
{ {
if (instance[i] != NULL) // 碰到NULL说明已经遍历完所有实例 if (instance[i] != NULL) // 碰到NULL说明已经遍历完所有实例
{ // 两者相等说明这是要找的实例 { // 两者相等说明这是要找的实例

View File

@ -70,7 +70,7 @@ void USARTSend(USARTInstance *_instance, uint8_t *send_buf, uint16_t send_size)
*/ */
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size) void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
{ {
for (uint8_t i = 0; i < 3; i++) for (uint8_t i = 0; i < 3; ++i)
{ {
if (huart == instance[i]->usart_handle) if (huart == instance[i]->usart_handle)
{ {
@ -93,7 +93,7 @@ void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
*/ */
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{ {
for (uint8_t i = 0; i < 3; i++) for (uint8_t i = 0; i < 3; ++i)
{ {
if (huart == instance[i]->usart_handle) if (huart == instance[i]->usart_handle)
{ {

View File

@ -156,7 +156,7 @@ void IMU_QuaternionEKF_Update(float gx, float gy, float gz, float ax, float ay,
// set z,单位化重力加速度向量 // set z,单位化重力加速度向量
accelInvNorm = invSqrt(QEKF_INS.Accel[0] * QEKF_INS.Accel[0] + QEKF_INS.Accel[1] * QEKF_INS.Accel[1] + QEKF_INS.Accel[2] * QEKF_INS.Accel[2]); accelInvNorm = invSqrt(QEKF_INS.Accel[0] * QEKF_INS.Accel[0] + QEKF_INS.Accel[1] * QEKF_INS.Accel[1] + QEKF_INS.Accel[2] * QEKF_INS.Accel[2]);
for (uint8_t i = 0; i < 3; i++) for (uint8_t i = 0; i < 3; ++i)
{ {
QEKF_INS.IMU_QuaternionEKF.MeasuredVector[i] = QEKF_INS.Accel[i] * accelInvNorm; // 用加速度向量更新量测值 QEKF_INS.IMU_QuaternionEKF.MeasuredVector[i] = QEKF_INS.Accel[i] * accelInvNorm; // 用加速度向量更新量测值
} }
@ -238,7 +238,7 @@ static void IMU_QuaternionEKF_F_Linearization_P_Fading(KalmanFilter_t *kf)
// quaternion normalize // quaternion normalize
qInvNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); qInvNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
for (uint8_t i = 0; i < 4; i++) for (uint8_t i = 0; i < 4; ++i)
{ {
kf->xhatminus_data[i] *= qInvNorm; kf->xhatminus_data[i] *= qInvNorm;
} }
@ -352,7 +352,7 @@ static void IMU_QuaternionEKF_xhatUpdate(KalmanFilter_t *kf)
kf->temp_vector_data[2] = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3; // temp_vector = h(xhat'(k)) kf->temp_vector_data[2] = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3; // temp_vector = h(xhat'(k))
// 计算预测值和各个轴的方向余弦 // 计算预测值和各个轴的方向余弦
for (uint8_t i = 0; i < 3; i++) for (uint8_t i = 0; i < 3; ++i)
{ {
QEKF_INS.OrientationCosine[i] = acosf(fabsf(kf->temp_vector_data[i])); QEKF_INS.OrientationCosine[i] = acosf(fabsf(kf->temp_vector_data[i]));
} }
@ -426,13 +426,13 @@ static void IMU_QuaternionEKF_xhatUpdate(KalmanFilter_t *kf)
kf->MatStatus = Matrix_Multiply(&kf->temp_matrix, &kf->temp_matrix1, &kf->K); kf->MatStatus = Matrix_Multiply(&kf->temp_matrix, &kf->temp_matrix1, &kf->K);
// implement adaptive // implement adaptive
for (uint8_t i = 0; i < kf->K.numRows * kf->K.numCols; i++) for (uint8_t i = 0; i < kf->K.numRows * kf->K.numCols; ++i)
{ {
kf->K_data[i] *= QEKF_INS.AdaptiveGainScale; kf->K_data[i] *= QEKF_INS.AdaptiveGainScale;
} }
for (uint8_t i = 4; i < 6; i++) for (uint8_t i = 4; i < 6; ++i)
{ {
for (uint8_t j = 0; j < 3; j++) for (uint8_t j = 0; j < 3; ++j)
{ {
kf->K_data[i * 3 + j] *= QEKF_INS.OrientationCosine[i - 4] / 1.5707963f; // 1 rad kf->K_data[i * 3 + j] *= QEKF_INS.OrientationCosine[i - 4] / 1.5707963f; // 1 rad
} }
@ -445,7 +445,7 @@ static void IMU_QuaternionEKF_xhatUpdate(KalmanFilter_t *kf)
// 零漂修正限幅,一般不会有过大的漂移 // 零漂修正限幅,一般不会有过大的漂移
if (QEKF_INS.ConvergeFlag) if (QEKF_INS.ConvergeFlag)
{ {
for (uint8_t i = 4; i < 6; i++) for (uint8_t i = 4; i < 6; ++i)
{ {
if (kf->temp_vector.pData[i] > 1e-2f * QEKF_INS.dt) if (kf->temp_vector.pData[i] > 1e-2f * QEKF_INS.dt)
{ {

View File

@ -420,7 +420,7 @@ float *Kalman_Filter_Update(KalmanFilter_t *kf)
// 避免滤波器过度收敛 // 避免滤波器过度收敛
// suppress filter excessive convergence // suppress filter excessive convergence
for (uint8_t i = 0; i < kf->xhatSize; i++) for (uint8_t i = 0; i < kf->xhatSize; ++i)
{ {
if (kf->P_data[i * kf->xhatSize + i] < kf->StateMinVariance[i]) if (kf->P_data[i * kf->xhatSize + i] < kf->StateMinVariance[i])
kf->P_data[i * kf->xhatSize + i] = kf->StateMinVariance[i]; kf->P_data[i * kf->xhatSize + i] = kf->StateMinVariance[i];
@ -445,7 +445,7 @@ static void H_K_R_Adjustment(KalmanFilter_t *kf)
// recognize measurement validity and adjust matrices H R K // recognize measurement validity and adjust matrices H R K
memset(kf->R_data, 0, sizeof_float * kf->zSize * kf->zSize); memset(kf->R_data, 0, sizeof_float * kf->zSize * kf->zSize);
memset(kf->H_data, 0, sizeof_float * kf->xhatSize * kf->zSize); memset(kf->H_data, 0, sizeof_float * kf->xhatSize * kf->zSize);
for (uint8_t i = 0; i < kf->zSize; i++) for (uint8_t i = 0; i < kf->zSize; ++i)
{ {
if (kf->z_data[i] != 0) if (kf->z_data[i] != 0)
{ {
@ -459,7 +459,7 @@ static void H_K_R_Adjustment(KalmanFilter_t *kf)
kf->MeasurementValidNum++; kf->MeasurementValidNum++;
} }
} }
for (uint8_t i = 0; i < kf->MeasurementValidNum; i++) for (uint8_t i = 0; i < kf->MeasurementValidNum; ++i)
{ {
// 重构矩阵R // 重构矩阵R
// rebuild matrix R // rebuild matrix R

View File

@ -26,52 +26,49 @@ static void CANCommResetRx(CANCommInstance *ins)
*/ */
static void CANCommRxCallback(CANInstance *_instance) static void CANCommRxCallback(CANInstance *_instance)
{ {
for (size_t i = 0; i < idx; i++) static CANCommInstance *comm;
comm = (CANCommInstance *)_instance->id;
/* 接收状态判断 */
if (_instance->rx_buff[0] == CAN_COMM_HEADER && comm->recv_state == 0) // 尚未开始接收且新的一包里有帧头
{ {
if (can_comm_instance[i]->can_ins == _instance) // 遍历,找到对应的接收CAN COMM实例 if (_instance->rx_buff[1] == comm->recv_data_len) // 接收长度等于设定接收长度
{ {
/* 接收状态判断 */ comm->recv_state = 1;
if (_instance->rx_buff[0] == CAN_COMM_HEADER && can_comm_instance[i]->recv_state == 0) // 尚未开始接收且新的一包里有帧头 }
else
return; // 直接跳过即可
}
if (comm->recv_state) // 已经收到过帧头
{ // 如果已经接收到的长度加上当前一包的长度大于总buf len,说明接收错误
if (comm->cur_recv_len + _instance->rx_len > comm->recv_buf_len)
{
CANCommResetRx(comm);
return; // 重置状态然后返回
}
// 直接拷贝到当前的接收buffer后面
memcpy(comm->raw_recvbuf + comm->cur_recv_len, _instance->rx_buff, _instance->rx_len);
comm->cur_recv_len += _instance->rx_len;
// 当前已经收满
if (comm->cur_recv_len == comm->recv_buf_len)
{ // buff里本该是tail的位置不等于CAN_COMM_TAIL
if (comm->raw_recvbuf[comm->recv_buf_len - 1] != CAN_COMM_TAIL)
{ {
if (_instance->rx_buff[1] == can_comm_instance[i]->recv_data_len) // 接收长度等于设定接收长度 CANCommResetRx(comm);
{ return; // 重置状态然后返回
can_comm_instance[i]->recv_state = 1;
}
else
return; // 直接跳过即可
} }
if (can_comm_instance[i]->recv_state) // 已经收到过帧头 else // tail正确, 对数据进行crc8校验
{ // 如果已经接收到的长度加上当前一包的长度大于总buf len,说明接收错误 {
if (can_comm_instance[i]->cur_recv_len + _instance->rx_len > can_comm_instance[i]->recv_buf_len) if (comm->raw_recvbuf[comm->recv_buf_len - 2] ==
{ crc_8(comm->raw_recvbuf + 2, comm->recv_data_len))
CANCommResetRx(can_comm_instance[i]); { // 通过校验,复制数据到unpack_data中
return; // 重置状态然后返回 memcpy(comm->unpacked_recv_data, comm->raw_recvbuf + 2, comm->recv_data_len);
} comm->update_flag = 1; // 数据更新flag置为1
// 直接拷贝到当前的接收buffer后面
memcpy(can_comm_instance[i]->raw_recvbuf + can_comm_instance[i]->cur_recv_len, _instance->rx_buff, _instance->rx_len);
can_comm_instance[i]->cur_recv_len += _instance->rx_len;
// 当前已经收满
if (can_comm_instance[i]->cur_recv_len == can_comm_instance[i]->recv_buf_len)
{ // buff里本该是tail的位置不等于CAN_COMM_TAIL
if (can_comm_instance[i]->raw_recvbuf[can_comm_instance[i]->recv_buf_len - 1] != CAN_COMM_TAIL)
{
CANCommResetRx(can_comm_instance[i]);
return; // 重置状态然后返回
}
else // tail正确, 对数据进行crc8校验
{
if (can_comm_instance[i]->raw_recvbuf[can_comm_instance[i]->recv_buf_len - 2] ==
crc_8(can_comm_instance[i]->raw_recvbuf + 2, can_comm_instance[i]->recv_data_len))
{ // 通过校验,复制数据到unpack_data中
memcpy(can_comm_instance[i]->unpacked_recv_data, can_comm_instance[i]->raw_recvbuf + 2, can_comm_instance[i]->recv_data_len);
can_comm_instance[i]->update_flag = 1; // 数据更新flag置为1
}
CANCommResetRx(can_comm_instance[i]);
return; // 重置状态然后返回
}
} }
CANCommResetRx(comm);
return; // 重置状态然后返回
} }
return; // 访问完一个can comm直接退出,一次中断只会也只可能会处理一个实例的回调 return; // 访问完一个can comm直接退出,一次中断只会也只可能会处理一个实例的回调
} }
@ -90,6 +87,7 @@ CANCommInstance *CANCommInit(CANComm_Init_Config_s *comm_config)
can_comm_instance[idx]->raw_sendbuf[1] = comm_config->send_data_len; can_comm_instance[idx]->raw_sendbuf[1] = comm_config->send_data_len;
can_comm_instance[idx]->raw_sendbuf[comm_config->send_data_len + CAN_COMM_OFFSET_BYTES - 1] = CAN_COMM_TAIL; can_comm_instance[idx]->raw_sendbuf[comm_config->send_data_len + CAN_COMM_OFFSET_BYTES - 1] = CAN_COMM_TAIL;
comm_config->can_config.id = can_comm_instance[idx];
comm_config->can_config.can_module_callback = CANCommRxCallback; comm_config->can_config.can_module_callback = CANCommRxCallback;
can_comm_instance[idx]->can_ins = CANRegister(&comm_config->can_config); can_comm_instance[idx]->can_ins = CANRegister(&comm_config->can_config);
return can_comm_instance[idx++]; return can_comm_instance[idx++];

View File

@ -31,7 +31,7 @@ uint8_t DaemonIsOnline(DaemonInstance *instance)
void DaemonTask() void DaemonTask()
{ {
static DaemonInstance* pins; //提高可读性同时降低访存开销 static DaemonInstance* pins; //提高可读性同时降低访存开销
for (size_t i = 0; i < idx; i++) for (size_t i = 0; i < idx; ++i)
{ {
pins=daemon_instances[i]; pins=daemon_instances[i];
if(pins->temp_count>0) if(pins->temp_count>0)

View File

@ -144,7 +144,7 @@ void Calibrate_MPU_Offset(IMU_Data_t *bmi088)
bmi088->GyroOffset[1] = 0; bmi088->GyroOffset[1] = 0;
bmi088->GyroOffset[2] = 0; bmi088->GyroOffset[2] = 0;
for (uint16_t i = 0; i < CaliTimes; i++) for (uint16_t i = 0; i < CaliTimes; ++i)
{ {
BMI088_accel_read_muli_reg(BMI088_ACCEL_XOUT_L, buf, 6); BMI088_accel_read_muli_reg(BMI088_ACCEL_XOUT_L, buf, 6);
bmi088_raw_temp = (int16_t)((buf[1]) << 8) | buf[0]; bmi088_raw_temp = (int16_t)((buf[1]) << 8) | buf[0];
@ -176,7 +176,7 @@ void Calibrate_MPU_Offset(IMU_Data_t *bmi088)
{ {
gNormMax = gNormTemp; gNormMax = gNormTemp;
gNormMin = gNormTemp; gNormMin = gNormTemp;
for (uint8_t j = 0; j < 3; j++) for (uint8_t j = 0; j < 3; ++j)
{ {
gyroMax[j] = bmi088->Gyro[j]; gyroMax[j] = bmi088->Gyro[j];
gyroMin[j] = bmi088->Gyro[j]; gyroMin[j] = bmi088->Gyro[j];
@ -188,7 +188,7 @@ void Calibrate_MPU_Offset(IMU_Data_t *bmi088)
gNormMax = gNormTemp; gNormMax = gNormTemp;
if (gNormTemp < gNormMin) if (gNormTemp < gNormMin)
gNormMin = gNormTemp; gNormMin = gNormTemp;
for (uint8_t j = 0; j < 3; j++) for (uint8_t j = 0; j < 3; ++j)
{ {
if (bmi088->Gyro[j] > gyroMax[j]) if (bmi088->Gyro[j] > gyroMax[j])
gyroMax[j] = bmi088->Gyro[j]; gyroMax[j] = bmi088->Gyro[j];
@ -198,7 +198,7 @@ void Calibrate_MPU_Offset(IMU_Data_t *bmi088)
} }
gNormDiff = gNormMax - gNormMin; gNormDiff = gNormMax - gNormMin;
for (uint8_t j = 0; j < 3; j++) for (uint8_t j = 0; j < 3; ++j)
gyroDiff[j] = gyroMax[j] - gyroMin[j]; gyroDiff[j] = gyroMax[j] - gyroMin[j];
if (gNormDiff > 0.5f || if (gNormDiff > 0.5f ||
gyroDiff[0] > 0.15f || gyroDiff[0] > 0.15f ||
@ -209,7 +209,7 @@ void Calibrate_MPU_Offset(IMU_Data_t *bmi088)
} }
bmi088->gNorm /= (float)CaliTimes; bmi088->gNorm /= (float)CaliTimes;
for (uint8_t i = 0; i < 3; i++) for (uint8_t i = 0; i < 3; ++i)
bmi088->GyroOffset[i] /= (float)CaliTimes; bmi088->GyroOffset[i] /= (float)CaliTimes;
BMI088_accel_read_muli_reg(BMI088_TEMP_M, buf, 2); BMI088_accel_read_muli_reg(BMI088_TEMP_M, buf, 2);

View File

@ -112,7 +112,7 @@ void INS_Task(void)
// 将重力从导航坐标系n转换到机体系b,随后根据加速度计数据计算运动加速度 // 将重力从导航坐标系n转换到机体系b,随后根据加速度计数据计算运动加速度
float gravity_b[3]; float gravity_b[3];
EarthFrameToBodyFrame(gravity, gravity_b, INS.q); EarthFrameToBodyFrame(gravity, gravity_b, INS.q);
for (uint8_t i = 0; i < 3; i++) // 同样过一个低通滤波 for (uint8_t i = 0; i < 3; ++i) // 同样过一个低通滤波
{ {
INS.MotionAccel_b[i] = (INS.Accel[i] - gravity_b[i]) * dt / (INS.AccelLPF + dt) + INS.MotionAccel_b[i] * INS.AccelLPF / (INS.AccelLPF + dt); INS.MotionAccel_b[i] = (INS.Accel[i] - gravity_b[i]) * dt / (INS.AccelLPF + dt) + INS.MotionAccel_b[i] * INS.AccelLPF / (INS.AccelLPF + dt);
} }
@ -218,7 +218,7 @@ static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[
param->flag = 0; param->flag = 0;
} }
float gyro_temp[3]; float gyro_temp[3];
for (uint8_t i = 0; i < 3; i++) for (uint8_t i = 0; i < 3; ++i)
gyro_temp[i] = gyro[i] * param->scale[i]; gyro_temp[i] = gyro[i] * param->scale[i];
gyro[X] = c_11 * gyro_temp[X] + gyro[X] = c_11 * gyro_temp[X] +
@ -232,7 +232,7 @@ static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[
c_33 * gyro_temp[Z]; c_33 * gyro_temp[Z];
float accel_temp[3]; float accel_temp[3];
for (uint8_t i = 0; i < 3; i++) for (uint8_t i = 0; i < 3; ++i)
accel_temp[i] = accel[i]; accel_temp[i] = accel[i];
accel[X] = c_11 * accel_temp[X] + accel[X] = c_11 * accel_temp[X] +

View File

@ -29,7 +29,7 @@ void led_RGB_flow_task()
static float alpha, red, green, blue; static float alpha, red, green, blue;
static uint32_t aRGB; static uint32_t aRGB;
for (size_t i = 0; i < RGB_FLOW_COLOR_LENGHT; i++) for (size_t i = 0; i < RGB_FLOW_COLOR_LENGHT; ++i)
{ {
alpha = (RGB_flow_color[i] & 0xFF000000) >> 24; alpha = (RGB_flow_color[i] & 0xFF000000) >> 24;
red = ((RGB_flow_color[i] & 0x00FF0000) >> 16); red = ((RGB_flow_color[i] & 0x00FF0000) >> 16);
@ -45,7 +45,7 @@ void led_RGB_flow_task()
delta_red /= RGB_FLOW_COLOR_CHANGE_TIME; delta_red /= RGB_FLOW_COLOR_CHANGE_TIME;
delta_green /= RGB_FLOW_COLOR_CHANGE_TIME; delta_green /= RGB_FLOW_COLOR_CHANGE_TIME;
delta_blue /= RGB_FLOW_COLOR_CHANGE_TIME; delta_blue /= RGB_FLOW_COLOR_CHANGE_TIME;
for (size_t j = 0; j < RGB_FLOW_COLOR_CHANGE_TIME; j++) for (size_t j = 0; j < RGB_FLOW_COLOR_CHANGE_TIME; ++j)
{ {
alpha += delta_alpha; alpha += delta_alpha;
red += delta_red; red += delta_red;

View File

@ -14,11 +14,11 @@ void MessageInit()
{ {
// pub必须唯一,即消息名称不能重复,不得有多个pub发布相同消息名称 // pub必须唯一,即消息名称不能重复,不得有多个pub发布相同消息名称
// 对每一个subscriber,寻找相同消息名称的publisher,可能有多个sub从相同pub获取消息 // 对每一个subscriber,寻找相同消息名称的publisher,可能有多个sub从相同pub获取消息
for (size_t i = 0; i < MAX_EVENT_COUNT; i++) for (size_t i = 0; i < MAX_EVENT_COUNT; ++i)
{ {
if (s_pptr[i] != NULL) if (s_pptr[i] != NULL)
{ {
for (size_t j = 0; j < MAX_EVENT_COUNT; j++) // 遍历publisher for (size_t j = 0; j < MAX_EVENT_COUNT; ++j) // 遍历publisher
{ {
if (p_ptr[j] != NULL) // 不为空 if (p_ptr[j] != NULL) // 不为空
{ {
@ -46,7 +46,7 @@ void MessageInit()
void PublisherRegister(char *name, void *data) void PublisherRegister(char *name, void *data)
{ {
static uint8_t idx; static uint8_t idx;
for (size_t i = 0; i < idx; i++) for (size_t i = 0; i < idx; ++i)
{ {
if (strcmp(pname[i], name) == 0) if (strcmp(pname[i], name) == 0)
while (1) while (1)
@ -105,7 +105,7 @@ Subscriber_t *SubRegister(char *name, uint8_t data_len)
memset(ret, 0, sizeof(Subscriber_t)); memset(ret, 0, sizeof(Subscriber_t));
// 对新建的Subscriber进行初始化 // 对新建的Subscriber进行初始化
ret->data_len = data_len; // 设定数据长度 ret->data_len = data_len; // 设定数据长度
for (size_t i = 0; i < QUEUE_SIZE; i++) for (size_t i = 0; i < QUEUE_SIZE; ++i)
{ // 给消息队列的每一个元素分配空间,queue里保存的实际上是数据执指针,这样可以兼容不同的数据长度 { // 给消息队列的每一个元素分配空间,queue里保存的实际上是数据执指针,这样可以兼容不同的数据长度
ret->queue[i] = malloc(sizeof(data_len)); ret->queue[i] = malloc(sizeof(data_len));
} }
@ -135,7 +135,7 @@ Subscriber_t *SubRegister(char *name, uint8_t data_len)
Subscriber_t *ret = (Subscriber_t *)malloc(sizeof(Subscriber_t)); Subscriber_t *ret = (Subscriber_t *)malloc(sizeof(Subscriber_t));
memset(ret, 0, sizeof(Subscriber_t)); memset(ret, 0, sizeof(Subscriber_t));
ret->data_len = data_len; ret->data_len = data_len;
for (size_t i = 0; i < QUEUE_SIZE; i++) for (size_t i = 0; i < QUEUE_SIZE; ++i)
{ // 给消息队列分配空间 { // 给消息队列分配空间
ret->queue[i] = malloc(sizeof(data_len)); ret->queue[i] = malloc(sizeof(data_len));
} }

View File

@ -1,15 +1,31 @@
#include "HT04.h" #include "HT04.h"
#include "memory.h" #include "memory.h"
#include "general_def.h"
HKMotor_Measure_t *joint_motor_info[HT_MOTOR_CNT]; static uint8_t idx;
HTMotorInstance *ht_motor_info[HT_MOTOR_CNT];
/**
* @brief
*
* @param cmd
* @param motor
*/
static void HTMotorSetMode(HTMotor_Mode_t cmd, HTMotorInstance *motor)
{
static uint8_t buf[8] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00};
buf[7] = (uint8_t)cmd;
memcpy(motor->motor_can_instace->tx_buff, buf, sizeof(buf));
CANTransmit(motor->motor_can_instace);
}
/* 两个用于将uint值和float值进行映射的函数,在设定发送值和解析反馈值时使用 */
static uint16_t float_to_uint(float x, float x_min, float x_max, uint8_t bits) static uint16_t float_to_uint(float x, float x_min, float x_max, uint8_t bits)
{ {
float span = x_max - x_min; float span = x_max - x_min;
float offset = x_min; float offset = x_min;
return (uint16_t)((x - offset) * ((float)((1 << bits) - 1)) / span); return (uint16_t)((x - offset) * ((float)((1 << bits) - 1)) / span);
} }
static float uint_to_float(int x_int, float x_min, float x_max, int bits) static float uint_to_float(int x_int, float x_min, float x_max, int bits)
{ {
float span = x_max - x_min; float span = x_max - x_min;
@ -17,47 +33,84 @@ static float uint_to_float(int x_int, float x_min, float x_max, int bits)
return ((float)x_int) * span / ((float)((1 << bits) - 1)) + offset; return ((float)x_int) * span / ((float)((1 << bits) - 1)) + offset;
} }
static void DecodeJoint(CANInstance *motor_instance) /**
* @brief
*
* @param motor_can
*/
static void HTMotorDecode(CANInstance *motor_can)
{ {
uint16_t tmp; static uint16_t tmp; // 用于暂存解析值,稍后转换成float数据,避免多次创建临时变量
for (size_t i = 0; i < HT_MOTOR_CNT; i++) static HTMotor_Measure_t *measure;
static uint8_t *rxbuff;
rxbuff = motor_can->rx_buff;
measure = &((HTMotorInstance *)motor_can->id)->motor_measure;
measure->last_angle = measure->total_angle;
tmp = (uint16_t)((rxbuff[1] << 8) | rxbuff[2]);
measure->total_angle = RAD_2_ANGLE * uint_to_float(tmp, P_MAX, P_MIN, 16);
tmp = (uint16_t)((rxbuff[3] << 4) | (rxbuff[4] >> 4));
measure->speed_aps = RAD_2_ANGLE * SPEED_SMOOTH_COEF * uint_to_float(tmp, V_MAX, V_MIN, 12) +
(1 - SPEED_SMOOTH_COEF) * measure->speed_aps;
tmp = (uint16_t)(((rxbuff[4] & 0x0f) << 8) | rxbuff[5]);
measure->real_current = CURRENT_SMOOTH_COEF * uint_to_float(tmp, T_MAX, T_MIN, 12) +
(1 - CURRENT_SMOOTH_COEF) * measure->real_current;
}
HTMotorInstance *HTMotorInit(Motor_Init_Config_s *config)
{
ht_motor_info[idx] = (HTMotorInstance *)malloc(sizeof(HTMotorInstance));
memset(ht_motor_info[idx], 0, sizeof(HTMotorInstance));
ht_motor_info[idx]->motor_settings = config->controller_setting_init_config;
PID_Init(&ht_motor_info[idx]->current_PID, &config->controller_param_init_config.current_PID);
PID_Init(&ht_motor_info[idx]->speed_PID, &config->controller_param_init_config.speed_PID);
PID_Init(&ht_motor_info[idx]->angle_PID, &config->controller_param_init_config.angle_PID);
ht_motor_info[idx]->other_angle_feedback_ptr = config->controller_param_init_config.other_angle_feedback_ptr;
ht_motor_info[idx]->other_speed_feedback_ptr = config->controller_param_init_config.other_speed_feedback_ptr;
config->can_init_config.can_module_callback = HTMotorDecode;
config->can_init_config.id = ht_motor_info[idx];
ht_motor_info[idx]->motor_can_instace = CANRegister(&config->can_init_config);
HTMotorEnable(ht_motor_info[idx]);
return ht_motor_info[idx++];
}
void HTMotorSetRef(HTMotorInstance *motor, float ref)
{
motor->pid_ref = ref;
}
void HTMotorControl()
{
static uint16_t tmp;
for (size_t i = 0; i < idx; i++)
{ {
if (joint_motor_info[i]->motor_can_instace == motor_instance) // tmp=float_to_uint()
{ // _instance->motor_can_instace->rx_buff[6] = tmp >> 8;
tmp = (motor_instance->rx_buff[1] << 8) | motor_instance->rx_buff[2]; // _instance->motor_can_instace->rx_buff[7] = tmp & 0xff;
joint_motor_info[i]->last_ecd = joint_motor_info[i]->ecd; // CANTransmit(_instance->motor_can_instace);
joint_motor_info[i]->ecd = uint_to_float(tmp, P_MAX, P_MIN, 16);
tmp = (motor_instance->rx_buff[3] << 4) | (motor_instance->rx_buff[4] >> 4);
joint_motor_info[i]->speed_rpm = uint_to_float(tmp, V_MAX, V_MIN, 12);
tmp = ((motor_instance->rx_buff[4] & 0xf) << 8) | motor_instance->rx_buff[5];
joint_motor_info[i]->real_current = uint_to_float(tmp, T_MAX, T_MIN, 12);
break;
}
} }
} }
HKMotor_Measure_t *HTMotorInit(CAN_Init_Config_s config) void HTMotorStop(HTMotorInstance *motor)
{ {
static uint8_t idx; HTMotorSetMode(CMD_RESET_MODE, motor);
joint_motor_info[idx] = (HKMotor_Measure_t *)malloc(sizeof(HKMotor_Measure_t));
joint_motor_info[idx]->motor_can_instace = CANRegister(&config);
return joint_motor_info[idx++];
} }
void JointControl(HKMotor_Measure_t *_instance, float current) void HTMotorEnable(HTMotorInstance *motor)
{ {
uint16_t tmp; HTMotorSetMode(CMD_MOTOR_MODE, motor);
LIMIT_MIN_MAX(current, T_MIN, T_MAX);
tmp = float_to_uint(current, T_MIN, T_MAX, 12);
_instance->motor_can_instace->rx_buff[6] = tmp >> 8;
_instance->motor_can_instace->rx_buff[7] = tmp & 0xff;
CANTransmit(_instance->motor_can_instace);
} }
void SetJointMode(joint_mode cmd, HKMotor_Measure_t *_instance) void HTMotorCalibEncoder(HTMotorInstance *motor)
{ {
static uint8_t buf[8] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00}; HTMotorSetMode(CMD_ZERO_POSITION, motor);
buf[7] = (uint8_t)cmd;
memcpy(_instance->motor_can_instace->rx_buff, buf, 8 * sizeof(uint8_t));
CANTransmit(_instance->motor_can_instace);
} }

View File

@ -7,36 +7,94 @@
#include "motor_def.h" #include "motor_def.h"
#define HT_MOTOR_CNT 4 #define HT_MOTOR_CNT 4
#define CURRENT_SMOOTH_COEF 0.9f
#define SPEED_SMOOTH_COEF 0.85f
#define P_MIN -95.5f // Radians #define P_MIN -95.5f // Radians
#define P_MAX 95.5f #define P_MAX 95.5f
#define V_MIN -45.0f // Rad/s #define V_MIN -45.0f // Rad/s
#define V_MAX 45.0f #define V_MAX 45.0f
#define T_MIN -18.0f #define T_MIN -18.0f // N·m
#define T_MAX 18.0f #define T_MAX 18.0f
typedef struct // HT04 typedef struct // HT04
{ { // 角度为多圈角度,范围是-95.5~95.5,单位为rad
float last_ecd; float last_angle;
float ecd; float total_angle;
float speed_rpm; float speed_aps;
float real_current; float real_current;
} HTMotor_Measure_t;
/* HT电机类型定义*/
typedef struct
{
HTMotor_Measure_t motor_measure;
Motor_Control_Setting_s motor_settings;
PIDInstance current_PID;
PIDInstance speed_PID;
PIDInstance angle_PID;
float *other_angle_feedback_ptr;
float *other_speed_feedback_ptr;
float pid_ref;
PIDInstance pid;
CANInstance *motor_can_instace; CANInstance *motor_can_instace;
} HKMotor_Measure_t; } HTMotorInstance;
/* HT电机模式,初始化时自动进入CMD_MOTOR_MODE*/
typedef enum typedef enum
{ {
CMD_MOTOR_MODE = 0xfc, CMD_MOTOR_MODE = 0xfc, // 使能,会响应指令
CMD_RESET_MODE = 0xfd, CMD_RESET_MODE = 0xfd, // 停止
CMD_ZERO_POSITION = 0xfe CMD_ZERO_POSITION = 0xfe // 将当前的位置设置为编码器零位
} joint_mode; } HTMotor_Mode_t;
HKMotor_Measure_t *HTMotorInit(CAN_Init_Config_s config); /**
* @brief
*
* @param config
* @return HTMotorInstance*
*/
HTMotorInstance *HTMotorInit(Motor_Init_Config_s *config);
void JointControl(HKMotor_Measure_t *_instance, float current); /**
* @brief
*
* @param motor
* @param current
*/
void HTMotorSetRef(HTMotorInstance *motor, float ref);
void SetJointMode(joint_mode cmd, HKMotor_Measure_t *_instance); /**
* @brief HT电机发送控制指令
*
*/
void HTMotorControl();
/**
* @brief ,HTMotorSetRef设定的值
*
* @param motor
*/
void HTMotorStop(HTMotorInstance *motor);
/**
* @brief
*
* @param motor
*/
void HTMotorEnable(HTMotorInstance *motor);
/**
* @brief
* @attention ,,360°!
* ,,360°!
* ,,360°!
* ,,360°!
*
* @param motor
*/
void HTMotorCalibEncoder(HTMotorInstance *motor);
#endif // !HT04_H#define HT04_H #endif // !HT04_H#define HT04_H

View File

@ -2,25 +2,25 @@
#include "stdlib.h" #include "stdlib.h"
static uint8_t idx; static uint8_t idx;
static LKMotorInstance* lkmotor_instance[LK_MOTOR_MX_CNT]={NULL}; static LKMotorInstance *lkmotor_instance[LK_MOTOR_MX_CNT] = {NULL};
static void LKMotorDecode(CANInstance *_instance) static void LKMotorDecode(CANInstance *_instance)
{ {
static LKMotor_Measure_t* measure; static LKMotor_Measure_t *measure;
static uint8_t* rx_buff; static uint8_t *rx_buff;
rx_buff=_instance->rx_buff; rx_buff = _instance->rx_buff;
measure=&((LKMotorInstance*)_instance)->measure; measure = &((LKMotorInstance *)_instance)->measure;
measure->last_ecd=measure->ecd;
measure->ecd=(uint16_t)((rx_buff[7] << 8) | rx_buff[6]);
measure->angle_single_round=ECD_ANGLE_COEF*measure->ecd;
measure->speed_aps=(1-SPEED_SMOOTH_COEF)*measure->speed_aps+
SPEED_SMOOTH_COEF*(float)((int16_t)(rx_buff[5] << 8 | rx_buff[4]));
measure->real_current=(1-CURRENT_SMOOTH_COEF)*measure->real_current+
CURRENT_SMOOTH_COEF*(float)((int16_t)(rx_buff[3] << 8 | rx_buff[2]));
measure->temperate=rx_buff[1];
//计算多圈角度 measure->last_ecd = measure->ecd;
measure->ecd = (uint16_t)((rx_buff[7] << 8) | rx_buff[6]);
measure->angle_single_round = ECD_ANGLE_COEF_LK * measure->ecd;
measure->speed_aps = (1 - SPEED_SMOOTH_COEF) * measure->speed_aps +
SPEED_SMOOTH_COEF * (float)((int16_t)(rx_buff[5] << 8 | rx_buff[4]));
measure->real_current = (1 - CURRENT_SMOOTH_COEF) * measure->real_current +
CURRENT_SMOOTH_COEF * (float)((int16_t)(rx_buff[3] << 8 | rx_buff[2]));
measure->temperate = rx_buff[1];
// 计算多圈角度
if (measure->ecd - measure->last_ecd > 32678) if (measure->ecd - measure->last_ecd > 32678)
measure->total_round--; measure->total_round--;
else if (measure->ecd - measure->last_ecd < -32678) else if (measure->ecd - measure->last_ecd < -32678)
@ -28,48 +28,46 @@ static void LKMotorDecode(CANInstance *_instance)
measure->total_angle = measure->total_round * 360 + measure->angle_single_round; measure->total_angle = measure->total_round * 360 + measure->angle_single_round;
} }
void LKMotorControl() void LKMotorControl()
{ {
for (size_t i = 0; i < idx; i++) for (size_t i = 0; i < idx; ++i)
{ {
} }
} }
LKMotorInstance *LKMotroInit(Motor_Init_Config_s *config) LKMotorInstance *LKMotroInit(Motor_Init_Config_s *config)
{ {
lkmotor_instance[idx]=(LKMotorInstance*)malloc(sizeof(LKMotorInstance)); lkmotor_instance[idx] = (LKMotorInstance *)malloc(sizeof(LKMotorInstance));
memset(lkmotor_instance[idx],0,sizeof(LKMotorInstance)); memset(lkmotor_instance[idx], 0, sizeof(LKMotorInstance));
lkmotor_instance[idx]->motor_settings=config->controller_setting_init_config; lkmotor_instance[idx]->motor_settings = config->controller_setting_init_config;
PID_Init(&lkmotor_instance[idx]->current_PID,&config->controller_param_init_config.current_PID); PID_Init(&lkmotor_instance[idx]->current_PID, &config->controller_param_init_config.current_PID);
PID_Init(&lkmotor_instance[idx]->current_PID,&config->controller_param_init_config.current_PID); PID_Init(&lkmotor_instance[idx]->speed_PID, &config->controller_param_init_config.speed_PID);
PID_Init(&lkmotor_instance[idx]->current_PID,&config->controller_param_init_config.current_PID); PID_Init(&lkmotor_instance[idx]->angle_PID, &config->controller_param_init_config.angle_PID);
lkmotor_instance[idx]->other_angle_feedback_ptr=config->controller_param_init_config.other_angle_feedback_ptr; lkmotor_instance[idx]->other_angle_feedback_ptr = config->controller_param_init_config.other_angle_feedback_ptr;
lkmotor_instance[idx]->other_speed_feedback_ptr=config->controller_param_init_config.other_speed_feedback_ptr; lkmotor_instance[idx]->other_speed_feedback_ptr = config->controller_param_init_config.other_speed_feedback_ptr;
config->can_init_config.can_module_callback=LKMotorDecode; config->can_init_config.id = lkmotor_instance[idx];
config->can_init_config.rx_id=0x140+config->can_init_config.tx_id; config->can_init_config.can_module_callback = LKMotorDecode;
config->can_init_config.tx_id=config->can_init_config.tx_id+0x240; config->can_init_config.rx_id = 0x140 + config->can_init_config.tx_id;
lkmotor_instance[idx]->motor_can_ins=CANRegister(&config->can_init_config); config->can_init_config.tx_id = config->can_init_config.tx_id + 0x240;
lkmotor_instance[idx]->motor_can_ins = CANRegister(&config->can_init_config);
LKMotorEnable(lkmotor_instance[idx]); LKMotorEnable(lkmotor_instance[idx]);
return lkmotor_instance[idx++]; return lkmotor_instance[idx++];
} }
void LKMotorStop(LKMotorInstance *motor) void LKMotorStop(LKMotorInstance *motor)
{ {
motor->stop_flag=MOTOR_STOP; motor->stop_flag = MOTOR_STOP;
} }
void LKMotorEnable(LKMotorInstance *motor) void LKMotorEnable(LKMotorInstance *motor)
{ {
motor->stop_flag=MOTOR_ENALBED; motor->stop_flag = MOTOR_ENALBED;
} }
void LKMotorSetRef(LKMotorInstance *motor, float ref) void LKMotorSetRef(LKMotorInstance *motor, float ref)
{ {
motor->pid_ref=ref; motor->pid_ref = ref;
} }

View File

@ -13,7 +13,7 @@
#define CURRENT_SMOOTH_COEF 0.9f #define CURRENT_SMOOTH_COEF 0.9f
#define SPEED_SMOOTH_COEF 0.85f #define SPEED_SMOOTH_COEF 0.85f
#define REDUCTION_RATIO_DRIVEN 1 #define REDUCTION_RATIO_DRIVEN 1
#define ECD_ANGLE_COEF (360.0f/65536.0f) #define ECD_ANGLE_COEF_LK (360.0f/65536.0f)
typedef struct // 9025 typedef struct // 9025
{ {

View File

@ -76,7 +76,7 @@ static void MotorSenderGrouping(CAN_Init_Config_s *config)
dji_motor_info[idx]->sender_group = motor_grouping; dji_motor_info[idx]->sender_group = motor_grouping;
// 检查是否发生id冲突 // 检查是否发生id冲突
for (size_t i = 0; i < idx; i++) for (size_t i = 0; i < idx; ++i)
{ {
if (dji_motor_info[i]->motor_can_instance->can_handle == config->can_handle && dji_motor_info[i]->motor_can_instance->rx_id == config->rx_id) if (dji_motor_info[i]->motor_can_instance->can_handle == config->can_handle && dji_motor_info[i]->motor_can_instance->rx_id == config->rx_id)
IDcrash_Handler(i, idx); IDcrash_Handler(i, idx);
@ -100,7 +100,7 @@ static void MotorSenderGrouping(CAN_Init_Config_s *config)
dji_motor_info[idx]->message_num = motor_send_num; dji_motor_info[idx]->message_num = motor_send_num;
dji_motor_info[idx]->sender_group = motor_grouping; dji_motor_info[idx]->sender_group = motor_grouping;
for (size_t i = 0; i < idx; i++) for (size_t i = 0; i < idx; ++i)
{ {
if (dji_motor_info[i]->motor_can_instance->can_handle == config->can_handle && dji_motor_info[i]->motor_can_instance->rx_id == config->rx_id) if (dji_motor_info[i]->motor_can_instance->can_handle == config->can_handle && dji_motor_info[i]->motor_can_instance->rx_id == config->rx_id)
IDcrash_Handler(i, idx); IDcrash_Handler(i, idx);
@ -124,15 +124,14 @@ static void DecodeDJIMotor(CANInstance *_instance)
static uint8_t *rxbuff; static uint8_t *rxbuff;
static DJI_Motor_Measure_s *measure; static DJI_Motor_Measure_s *measure;
rxbuff = _instance->rx_buff; rxbuff = _instance->rx_buff;
measure = &((DJIMotorInstance*)_instance->id)->motor_measure; // measure要多次使用,保存指针减小访存开销 measure = &((DJIMotorInstance *)_instance->id)->motor_measure; // measure要多次使用,保存指针减小访存开销
uint8_t nice;
// resolve data and apply filter to current and speed // resolve data and apply filter to current and speed
measure->last_ecd = measure->ecd; measure->last_ecd = measure->ecd;
measure->ecd = ((uint16_t)rxbuff[0]) << 8 | rxbuff[1]; measure->ecd = ((uint16_t)rxbuff[0]) << 8 | rxbuff[1];
measure->angle_single_round = ECD_ANGLE_COEF * (float)measure->ecd; measure->angle_single_round = ECD_ANGLE_COEF_DJI * (float)measure->ecd;
measure->speed_aps = (1.0f - SPEED_SMOOTH_COEF) * measure->speed_aps + RPM_2_ANGLE_PER_SEC * measure->speed_aps = (1.0f - SPEED_SMOOTH_COEF) * measure->speed_aps +
SPEED_SMOOTH_COEF *(float)((int16_t)(rxbuff[2] << 8 | rxbuff[3])) ; RPM_2_ANGLE_PER_SEC * SPEED_SMOOTH_COEF * (float)((int16_t)(rxbuff[2] << 8 | rxbuff[3]));
measure->real_current = (1.0f - CURRENT_SMOOTH_COEF) * measure->real_current + measure->real_current = (1.0f - CURRENT_SMOOTH_COEF) * measure->real_current +
CURRENT_SMOOTH_COEF * (float)((int16_t)(rxbuff[4] << 8 | rxbuff[5])); CURRENT_SMOOTH_COEF * (float)((int16_t)(rxbuff[4] << 8 | rxbuff[5]));
measure->temperate = rxbuff[6]; measure->temperate = rxbuff[6];
@ -167,7 +166,7 @@ DJIMotorInstance *DJIMotorInit(Motor_Init_Config_s *config)
// register motor to CAN bus // register motor to CAN bus
config->can_init_config.can_module_callback = DecodeDJIMotor; // set callback config->can_init_config.can_module_callback = DecodeDJIMotor; // set callback
config->can_init_config.id=dji_motor_info[idx]; //set id,eq to address(it is identity) config->can_init_config.id = dji_motor_info[idx]; // set id,eq to address(it is identity)
dji_motor_info[idx]->motor_can_instance = CANRegister(&config->can_init_config); dji_motor_info[idx]->motor_can_instance = CANRegister(&config->can_init_config);
DJIMotorEnable(dji_motor_info[idx]); DJIMotorEnable(dji_motor_info[idx]);
@ -220,7 +219,7 @@ void DJIMotorControl()
static DJI_Motor_Measure_s *motor_measure; static DJI_Motor_Measure_s *motor_measure;
static float pid_measure, pid_ref; static float pid_measure, pid_ref;
// 遍历所有电机实例,进行串级PID的计算并设置发送报文的值 // 遍历所有电机实例,进行串级PID的计算并设置发送报文的值
for (size_t i = 0; i < idx; i++) for (size_t i = 0; i < idx; ++i)
{ {
if (dji_motor_info[i]) if (dji_motor_info[i])
{ {
@ -279,7 +278,7 @@ void DJIMotorControl()
} }
// 遍历flag,检查是否要发送这一帧报文 // 遍历flag,检查是否要发送这一帧报文
for (size_t i = 0; i < 6; i++) for (size_t i = 0; i < 6; ++i)
{ {
if (sender_enable_flag[i]) if (sender_enable_flag[i])
{ {

View File

@ -24,7 +24,7 @@
/* 滤波系数设置为1的时候即关闭滤波 */ /* 滤波系数设置为1的时候即关闭滤波 */
#define SPEED_SMOOTH_COEF 0.85f // better to be greater than 0.85 #define SPEED_SMOOTH_COEF 0.85f // better to be greater than 0.85
#define CURRENT_SMOOTH_COEF 0.9f // this coef *must* be greater than 0.9 #define CURRENT_SMOOTH_COEF 0.9f // this coef *must* be greater than 0.9
#define ECD_ANGLE_COEF 0.043945f // 360/8192,将编码器值转化为角度制 #define ECD_ANGLE_COEF_DJI (360.0f/8192.0f) // ,将编码器值转化为角度制
/* DJI电机CAN反馈信息*/ /* DJI电机CAN反馈信息*/
typedef struct typedef struct

View File

@ -387,7 +387,7 @@ static dji_motor_instance *dji_motor_info[DJI_MOTOR_CNT] = {NULL};
```c ```c
#define PI2 (3.141592f * 2) #define PI2 (3.141592f * 2)
#define ECD_ANGLE_COEF 3.835e-4 // ecd/8192*pi #define ECD_ANGLE_COEF_DJI 3.835e-4 // ecd/8192*pi
``` ```
这两个宏用于在电机反馈信息中的多圈角度计算将编码器的0~8192转化为角度表示。 这两个宏用于在电机反馈信息中的多圈角度计算将编码器的0~8192转化为角度表示。

View File

@ -99,13 +99,15 @@ typedef enum
*/ */
typedef struct typedef struct
{ {
float *other_angle_feedback_ptr; float *other_angle_feedback_ptr; // 角度反馈数据指针,注意电机使用total_angle
float *other_speed_feedback_ptr; float *other_speed_feedback_ptr; // 速度反馈数据指针,单位为angle per sec
float *speed_feedforward_ptr; // 速度前馈数据指针
float *current_feedforward_ptr; // 电流前馈数据指针
PID_Init_config_s current_PID; PID_Init_config_s current_PID;
PID_Init_config_s speed_PID; PID_Init_config_s speed_PID;
PID_Init_config_s angle_PID; PID_Init_config_s angle_PID;
} Motor_Controller_Init_s; } Motor_Controller_Init_s;
/* 用于初始化CAN电机的结构体,各类电机通用 */ /* 用于初始化CAN电机的结构体,各类电机通用 */

View File

@ -15,7 +15,7 @@ static USARTInstance *rc_usart_instance;
*/ */
static void RectifyRCjoystick() static void RectifyRCjoystick()
{ {
for (uint8_t i = 0; i < 5; i++) for (uint8_t i = 0; i < 5; ++i)
{ {
if (*(&rc_ctrl[TEMP].rc.rocker_l_+i) > 660 || *(&rc_ctrl[TEMP].rc.rocker_l_+i) < -660) if (*(&rc_ctrl[TEMP].rc.rocker_l_+i) > 660 || *(&rc_ctrl[TEMP].rc.rocker_l_+i) < -660)
*(&rc_ctrl[TEMP].rc.rocker_l_+i) = 0; *(&rc_ctrl[TEMP].rc.rocker_l_+i) = 0;