sentry_chassis_hzz/modules/remote/remote_control.c

119 lines
5.8 KiB
C
Raw Normal View History

2022-10-20 17:13:02 +08:00
#include "remote_control.h"
#include "string.h"
#include "bsp_usart.h"
#include "memory.h"
2023-01-01 17:32:22 +08:00
#include "stdlib.h"
#include "daemon.h"
2022-10-20 17:13:02 +08:00
2022-11-01 22:32:15 +08:00
#define REMOTE_CONTROL_FRAME_SIZE 18u // 遥控器接收的buffer大小
// 遥控器数据
2023-01-01 17:32:22 +08:00
static RC_ctrl_t rc_ctrl[2]; //[0]:当前数据TEMP,[1]:上一次的数据LAST.用于按键持续按下和切换的判断
// 遥控器拥有的串口实例,因为遥控器是单例,所以这里只有一个,就不封装了
static USARTInstance *rc_usart_instance;
static DaemonInstance *rc_daemon_instance;
/**
* @brief ,660-660,0
*
*/
static void RectifyRCjoystick()
{
for (uint8_t i = 0; i < 5; ++i)
{
2023-01-01 17:32:22 +08:00
if (abs(*(&rc_ctrl[TEMP].rc.rocker_l_ + i)) > 660)
*(&rc_ctrl[TEMP].rc.rocker_l_ + i) = 0;
}
}
2022-10-20 17:13:02 +08:00
/**
2022-11-01 22:32:15 +08:00
* @brief remote control protocol resolution
* @param[in] sbus_buf: raw data point
* @param[out] rc_ctrl: remote control data struct point
* @retval none
2022-10-20 17:13:02 +08:00
*/
2023-01-01 17:32:22 +08:00
static void sbus_to_rc(const uint8_t *sbus_buf)
2022-10-20 17:13:02 +08:00
{
memcpy(&rc_ctrl[1], &rc_ctrl[TEMP], sizeof(RC_ctrl_t)); // 保存上一次的数据,用于按键持续按下和切换的判断
2022-12-08 17:36:12 +08:00
// 摇杆,直接解算时减去偏置
rc_ctrl[TEMP].rc.rocker_r_ = ((sbus_buf[0] | (sbus_buf[1] << 8)) & 0x07ff) - RC_CH_VALUE_OFFSET; //!< Channel 0
rc_ctrl[TEMP].rc.rocker_r1 = (((sbus_buf[1] >> 3) | (sbus_buf[2] << 5)) & 0x07ff) - RC_CH_VALUE_OFFSET; //!< Channel 1
rc_ctrl[TEMP].rc.rocker_l_ = (((sbus_buf[2] >> 6) | (sbus_buf[3] << 2) | (sbus_buf[4] << 10)) & 0x07ff) - RC_CH_VALUE_OFFSET; //!< Channel 2
rc_ctrl[TEMP].rc.rocker_l1 = (((sbus_buf[4] >> 1) | (sbus_buf[5] << 7)) & 0x07ff) - RC_CH_VALUE_OFFSET; //!< Channel 3
rc_ctrl[TEMP].rc.dial = ((sbus_buf[16] | (sbus_buf[17] << 8)) & 0x07FF) - RC_CH_VALUE_OFFSET; // 左侧拨轮
RectifyRCjoystick();
// 开关,0左1右
rc_ctrl[TEMP].rc.switch_right = ((sbus_buf[5] >> 4) & 0x0003); //!< Switch right
rc_ctrl[TEMP].rc.switch_left = ((sbus_buf[5] >> 4) & 0x000C) >> 2; //!< Switch left
// 鼠标解析
rc_ctrl[TEMP].mouse.x = sbus_buf[6] | (sbus_buf[7] << 8); //!< Mouse X axis
rc_ctrl[TEMP].mouse.y = sbus_buf[8] | (sbus_buf[9] << 8); //!< Mouse Y axis
rc_ctrl[TEMP].mouse.z = sbus_buf[10] | (sbus_buf[11] << 8); //!< Mouse Z axis
rc_ctrl[TEMP].mouse.press_l = sbus_buf[12]; //!< Mouse Left Is Press ?
rc_ctrl[TEMP].mouse.press_r = sbus_buf[13]; //!< Mouse Right Is Press ?
// 按键值,每个键1bit,key_temp共16位;按键顺序在remote_control.h的宏定义中可见
// 使用位域后不再需要这一中间操作
rc_ctrl[TEMP].key_temp = sbus_buf[14] | (sbus_buf[15] << 8); //!< KeyBoard value
// @todo 似乎可以直接用位域操作进行,把key_temp通过强制类型转换变成key类型? 位域方案在下面,尚未测试
// 按键值解算,利用宏+循环减少代码长度
for (uint16_t i = 0x0001, j = 0; i != 0x8000; i *= 2, j++) // 依次查看每一个键
2022-10-20 17:13:02 +08:00
{
// 如果键按下,对应键的key press状态置1,否则为0
rc_ctrl[TEMP].key[KEY_PRESS][j] = rc_ctrl[TEMP].key_temp & i;
// 如果当前按下且上一次没按下,切换按键状态.一些模式要通过按键状态而不是按键是否按下来确定(实际上是大部分)
rc_ctrl[TEMP].key[KEY_STATE][j] = rc_ctrl[TEMP].key[KEY_PRESS][j] && !rc_ctrl[1].key[KEY_PRESS][j];
// 检查是否有组合键按下
if (rc_ctrl[TEMP].key_temp & 0x0001u << Key_Shift) // 按下ctrl
rc_ctrl[TEMP].key[KEY_PRESS_WITH_SHIFT][j] = rc_ctrl[TEMP].key_temp & i;
if (rc_ctrl[TEMP].key_temp & 0x0001u << Key_Ctrl) // 按下shift
rc_ctrl[TEMP].key[KEY_PRESS_WITH_CTRL][j] = rc_ctrl[TEMP].key_temp & i;
2022-10-20 17:13:02 +08:00
}
2023-01-01 17:32:22 +08:00
// 位域的按键值解算,直接memcpy即可,注意小端低字节在前,即lsb在第一位,msb在最后. 尚未测试
// *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_PRESS] = (uint16_t)(sbus_buf[14] | (sbus_buf[15] << 8));
// *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_STATE] = *(uint16_t *)&rc_ctrl[TEMP].key_test[KEY_PRESS] & ~(*(uint16_t *)&(rc_ctrl[1].key_test[KEY_PRESS]));
// if (rc_ctrl[TEMP].key_test[KEY_PRESS].ctrl)
// rc_ctrl[TEMP].key_test[KEY_PRESS_WITH_CTRL] = rc_ctrl[TEMP].key_test[KEY_PRESS];
// if (rc_ctrl[TEMP].key_test[KEY_PRESS].shift)
// rc_ctrl[TEMP].key_test[Key_Shift] = rc_ctrl[TEMP].key_test[KEY_PRESS];
2022-10-20 17:13:02 +08:00
}
2022-11-01 22:32:15 +08:00
/**
* @brief sbus_to_rc的简单封装,bsp_usart的回调函数中
*
2022-11-01 22:32:15 +08:00
*/
static void RemoteControlRxCallback()
2022-11-01 22:32:15 +08:00
{
DaemonReload(rc_daemon_instance); // 先喂狗
sbus_to_rc(rc_usart_instance->recv_buff); // 进行协议解析
}
/**
* @brief
*
*/
static void RCLostCallback()
{
// @todo 遥控器丢失的处理
2022-11-01 22:32:15 +08:00
}
RC_ctrl_t *RemoteControlInit(UART_HandleTypeDef *rc_usart_handle)
2022-11-01 22:32:15 +08:00
{
USART_Init_Config_s conf;
conf.module_callback = RemoteControlRxCallback;
conf.usart_handle = rc_usart_handle;
conf.recv_buff_size = REMOTE_CONTROL_FRAME_SIZE;
rc_usart_instance = USARTRegister(&conf);
// 进行守护进程的注册,用于定时检查遥控器是否正常工作
// @todo 当前守护进程直接在这里注册,后续考虑将其封装到遥控器的初始化函数中,即可以让用户决定reload_count的值(是否有必要?)
Daemon_Init_Config_s daemon_conf = {
.reload_count = 100, // 100ms,遥控器的接收频率实际上是1000/14Hz(大约70)
.callback = NULL, // 后续考虑重新启动遥控器对应串口的传输
.owner_id = NULL, // 只有1个遥控器,不需要owner_id
};
rc_daemon_instance = DaemonRegister(&daemon_conf);
return (RC_ctrl_t *)&rc_ctrl;
2022-11-01 22:32:15 +08:00
}