scara_engineering/modules/robotics/robotics.cpp

451 lines
14 KiB
C++
Raw Normal View History

2024-12-22 16:15:37 +08:00
/**
******************************************************************************
* @file robotics.cpp/h
* @brief Robotic toolbox on STM32. STM32机器人学库
* @author Spoon Guan
* @ref [1] SJTU ME385-2, Robotics, Y.Ding
* [2] Bruno Siciliano, et al., Robotics: Modelling, Planning and
* Control, Springer, 2010.
* [3] R.Murry, Z.X.Li, and S.Sastry, A Mathematical Introduction
* to Robotic Manipulation, CRC Press, 1994.
******************************************************************************
* Copyright (c) 2023 Team JiaoLong-SJTU
* All rights reserved.
******************************************************************************
*/
#include "robotics.h"
Matrixf<3, 1> robotics::r2rpy(Matrixf<3, 3> R) {
float rpy[3] = {
atan2f(R[1][0], R[0][0]), // yaw
atan2f(-R[2][0], sqrtf(R[2][1] * R[2][1] + R[2][2] * R[2][2])), // pitch
atan2f(R[2][1], R[2][2]) // roll
};
return Matrixf<3, 1>(rpy);
}
Matrixf<3, 3> robotics::rpy2r(Matrixf<3, 1> rpy) {
float c[3] = {cosf(rpy[0][0]), cosf(rpy[1][0]), cosf(rpy[2][0])};
float s[3] = {sinf(rpy[0][0]), sinf(rpy[1][0]), sinf(rpy[2][0])};
float R[9] = {
c[0] * c[1], // R11
c[0] * s[1] * s[2] - s[0] * c[2], // R12
c[0] * s[1] * c[2] + s[0] * s[2], // R13
s[0] * c[1], // R21
s[0] * s[1] * s[2] + c[0] * c[2], // R22
s[0] * s[1] * c[2] - c[0] * s[2], // R23
-s[1], // R31
c[1] * s[2], // R32
c[1] * c[2] // R33
};
return Matrixf<3, 3>(R);
}
Matrixf<4, 1> robotics::r2angvec(Matrixf<3, 3> R) {
float theta = acosf(math::limit(0.5f * (R.trace() - 1), -1, 1));
if (theta == 0 || theta == PI) {
float angvec[4] = {
(1 + R[0][0] - R[1][1] - R[2][2]) / 4.0f, // rx=(1+R11-R22-R33)/4
(1 - R[0][0] + R[1][1] - R[2][2]) / 4.0f, // ry=(1-R11+R22-R33)/4
(1 - R[0][0] - R[1][1] + R[2][2]) / 4.0f, // rz=(1-R11-R22+R33)/4
theta // theta
};
return Matrixf<4, 1>(angvec);
}
float angvec[4] = {
(R[2][1] - R[1][2]) / (2.0f * sinf(theta)), // rx=(R32-R23)/2sinθ
(R[0][2] - R[2][0]) / (2.0f * sinf(theta)), // ry=(R13-R31)/2sinθ
(R[1][0] - R[0][1]) / (2.0f * sinf(theta)), // rz=(R21-R12)/2sinθ
theta // theta
};
return Matrixf<4, 1>(angvec);
}
Matrixf<3, 3> robotics::angvec2r(Matrixf<4, 1> angvec) {
float theta = angvec[3][0];
Matrixf<3, 1> r = angvec.block<3, 1>(0, 0);
Matrixf<3, 3> R;
// Rodrigues formula: R=I+ω^sinθ+ω^^2(1-cosθ)
R = matrixf::eye<3, 3>() + vector3f::hat(r) * sinf(theta) +
vector3f::hat(r) * vector3f::hat(r) * (1 - cosf(theta));
return R;
}
Matrixf<4, 1> robotics::r2quat(Matrixf<3, 3> R) {
float q[4] = {
0.5f * sqrtf(math::limit(R.trace(), -1, 1) + 1), // q0=cos(θ/2)
math::sign(R[2][1] - R[1][2]) * 0.5f *
sqrtf(math::limit(R[0][0] - R[1][1] - R[2][2], -1, 1) +
1), // q1=rx*sin(θ/2)
math::sign(R[0][2] - R[2][0]) * 0.5f *
sqrtf(math::limit(-R[0][0] + R[1][1] - R[2][2], -1, 1) +
1), // q2=ry*sin(θ/2)
math::sign(R[1][0] - R[0][1]) * 0.5f *
sqrtf(math::limit(-R[0][0] - R[1][1] + R[2][2], -1, 1) +
1), // q3=rz*sin(θ/2)
};
return (Matrixf<4, 1>(q) / Matrixf<4, 1>(q).norm());
}
Matrixf<3, 3> robotics::quat2r(Matrixf<4, 1> q) {
float R[9] = {
1 - 2.0f * (q[2][0] * q[2][0] + q[3][0] * q[3][0]), // R11
2.0f * (q[1][0] * q[2][0] - q[0][0] * q[3][0]), // R12
2.0f * (q[1][0] * q[3][0] + q[0][0] * q[2][0]), // R13
2.0f * (q[1][0] * q[2][0] + q[0][0] * q[3][0]), // R21
1 - 2.0f * (q[1][0] * q[1][0] + q[3][0] * q[3][0]), // R22
2.0f * (q[2][0] * q[3][0] - q[0][0] * q[1][0]), // R23
2.0f * (q[1][0] * q[3][0] - q[0][0] * q[2][0]), // R31
2.0f * (q[2][0] * q[3][0] + q[0][0] * q[1][0]), // R32
1 - 2.0f * (q[1][0] * q[1][0] + q[2][0] * q[2][0]) // R33
};
return Matrixf<3, 3>(R);
}
Matrixf<3, 1> robotics::quat2rpy(Matrixf<4, 1> q) {
float rpy[3] = {
atan2f(2.0f * (q[1][0] * q[2][0] + q[0][0] * q[3][0]),
1 - 2.0f * (q[2][0] * q[2][0] + q[3][0] * q[3][0])), // yaw
asinf(2.0f * (q[0][0] * q[2][0] - q[1][0] * q[3][0])), // pitch
atan2f(2.0f * (q[2][0] * q[3][0] + q[0][0] * q[1][0]),
1 - 2.0f * (q[1][0] * q[1][0] + q[2][0] * q[2][0])) // rol
};
return Matrixf<3, 1>(rpy);
}
Matrixf<4, 1> robotics::rpy2quat(Matrixf<3, 1> rpy) {
float c[3] = {cosf(0.5f * rpy[0][0]), cosf(0.5f * rpy[1][0]),
cosf(0.5f * rpy[2][0])}; // cos(*/2)
float s[3] = {sinf(0.5f * rpy[0][0]), sinf(0.5f * rpy[1][0]),
sinf(0.5f * rpy[2][0])}; // sin(*/2)
float q[4] = {
c[0] * c[1] * c[2] + s[0] * s[1] * s[2], // q0=cos(θ/2)
c[0] * c[1] * s[2] - s[0] * s[1] * c[2], // q1=rx*sin(θ/2)
c[0] * s[1] * c[2] + s[0] * c[1] * s[2], // q2=ry*sin(θ/2)
s[0] * c[1] * c[2] - c[0] * s[1] * s[2] // q3=rz*sin(θ/2)
};
return (Matrixf<4, 1>(q) / Matrixf<4, 1>(q).norm());
}
Matrixf<4, 1> robotics::quat2angvec(Matrixf<4, 1> q) {
float cosq0;
float theta = 2.0f * acosf(math::limit(q[0][0], -1, 1));
if (theta == 0 || theta == PI) {
float angvec[4] = {0, 0, 0, theta}; // θ=0||PI, return[0;θ]
return Matrixf<4, 1>(angvec);
}
Matrixf<3, 1> vec = q.block<3, 1>(1, 0);
float angvec[4] = {
vec[0][0] / vec.norm(), // rx
vec[1][0] / vec.norm(), // ry
vec[2][0] / vec.norm(), // rz
theta // theta
};
return Matrixf<4, 1>(angvec);
}
Matrixf<4, 1> robotics::angvec2quat(Matrixf<4, 1> angvec) {
float c = cosf(0.5f * angvec[3][0]), s = sinf(0.5f * angvec[3][0]);
float q[4] = {
c, // q0=cos(θ/2)
s * angvec[0][0], // q1=rx*sin(θ/2)
s * angvec[1][0], // q2=ry*sin(θ/2)
s * angvec[2][0] // q3=rz*sin(θ/2)
};
return Matrixf<4, 1>(q) / Matrixf<4, 1>(q).norm();
}
Matrixf<3, 3> robotics::t2r(Matrixf<4, 4> T) {
return T.block<3, 3>(0, 0); // R=T(1:3,1:3)
}
Matrixf<4, 4> robotics::r2t(Matrixf<3, 3> R) {
// T=[R,0;0,1]
float T[16] = {R[0][0], R[0][1], R[0][2], 0, R[1][0], R[1][1], R[1][2], 0,
R[2][0], R[2][1], R[2][2], 0, 0, 0, 0, 1};
return Matrixf<4, 4>(T);
}
Matrixf<3, 1> robotics::t2p(Matrixf<4, 4> T) {
return T.block<3, 1>(0, 3); // p=T(1:3,4)
}
Matrixf<4, 4> robotics::p2t(Matrixf<3, 1> p) {
// T=[I,P;0,1]
float T[16] = {1, 0, 0, p[0][0], 0, 1, 0, p[1][0],
0, 0, 1, p[2][0], 0, 0, 0, 1};
return Matrixf<4, 4>(T);
}
Matrixf<4, 4> robotics::rp2t(Matrixf<3, 3> R, Matrixf<3, 1> p) {
// T=[R,P;0,1]
float T[16] = {R[0][0], R[0][1], R[0][2], p[0][0], R[1][0], R[1][1],
R[1][2], p[1][0], R[2][0], R[2][1], R[2][2], p[2][0],
0, 0, 0, 1};
return Matrixf<4, 4>(T);
}
Matrixf<4, 4> robotics::invT(Matrixf<4, 4> T) {
Matrixf<3, 3> RT = t2r(T).trans();
Matrixf<3, 1> p_ = -1.0f * RT * t2p(T);
float invT[16] = {RT[0][0], RT[0][1], RT[0][2], p_[0][0], RT[1][0], RT[1][1],
RT[1][2], p_[1][0], RT[2][0], RT[2][1], RT[2][2], p_[2][0],
0, 0, 0, 1};
return Matrixf<4, 4>(invT);
}
Matrixf<3, 1> robotics::t2rpy(Matrixf<4, 4> T) {
return r2rpy(t2r(T));
}
Matrixf<4, 4> robotics::rpy2t(Matrixf<3, 1> rpy) {
return r2t(rpy2r(rpy));
}
Matrixf<4, 1> robotics::t2angvec(Matrixf<4, 4> T) {
return r2angvec(t2r(T));
}
Matrixf<4, 4> robotics::angvec2t(Matrixf<4, 1> angvec) {
return r2t(angvec2r(angvec));
}
Matrixf<4, 1> robotics::t2quat(Matrixf<4, 4> T) {
return r2quat(t2r(T));
}
Matrixf<4, 4> robotics::quat2t(Matrixf<4, 1> quat) {
return r2t(quat2r(quat));
}
Matrixf<6, 1> robotics::t2twist(Matrixf<4, 4> T) {
Matrixf<3, 1> p = t2p(T);
Matrixf<4, 1> angvec = t2angvec(T);
Matrixf<3, 1> phi = angvec.block<3, 1>(0, 0) * angvec[3][0];
float twist[6] = {p[0][0], p[1][0], p[2][0], phi[0][0], phi[1][0], phi[2][0]};
return Matrixf<6, 1>(twist);
}
Matrixf<4, 4> robotics::twist2t(Matrixf<6, 1> twist) {
Matrixf<3, 1> p = twist.block<3, 1>(0, 0);
float theta = twist.block<3, 1>(3, 0).norm();
float angvec[4] = {0, 0, 0, theta};
if (theta != 0) {
angvec[0] = twist[3][0] / theta;
angvec[1] = twist[4][0] / theta;
angvec[2] = twist[5][0] / theta;
}
return rp2t(angvec2r(angvec), p);
}
Matrixf<4, 4> robotics::DH_t::fkine() {
float ct = cosf(theta), st = sinf(theta); // cosθ, sinθ
float ca = cosf(alpha), sa = sinf(alpha); // cosα, sinα
// T =
// | cθ -sθcα sθsα acθ |
// | sθ cθcα -cθsα asθ |
// | 0 sα cα d |
// | 0 0 0 1 |
T[0][0] = ct;
T[0][1] = -st * ca;
T[0][2] = st * sa;
T[0][3] = a * ct;
T[1][0] = st;
T[1][1] = ct * ca;
T[1][2] = -ct * sa;
T[1][3] = a * st;
T[2][0] = 0;
T[2][1] = sa;
T[2][2] = ca;
T[2][3] = d;
T[3][0] = 0;
T[3][1] = 0;
T[3][2] = 0;
T[3][3] = 1;
return T;
}
robotics::Link::Link(float theta,
float d,
float a,
float alpha,
robotics::Joint_Type_e type,
float offset,
float qmin,
float qmax,
float m,
Matrixf<3, 1> rc,
Matrixf<3, 3> I) {
dh_.theta = theta;
dh_.d = d;
dh_.alpha = alpha;
dh_.a = a;
type_ = type;
offset_ = offset;
qmin_ = qmin;
qmax_ = qmax;
m_ = m;
rc_ = rc;
I_ = I;
}
robotics::Link::Link(const Link& link) {
dh_.theta = link.dh_.theta;
dh_.d = link.dh_.d;
dh_.alpha = link.dh_.alpha;
dh_.a = link.dh_.a;
type_ = link.type_;
offset_ = link.offset_;
qmin_ = link.qmin_;
qmax_ = link.qmax_;
m_ = link.m_;
rc_ = link.rc_;
I_ = link.I_;
}
robotics::Link& robotics::Link::operator=(Link link) {
dh_.theta = link.dh_.theta;
dh_.d = link.dh_.d;
dh_.alpha = link.dh_.alpha;
dh_.a = link.dh_.a;
type_ = link.type_;
offset_ = link.offset_;
qmin_ = link.qmin_;
qmax_ = link.qmax_;
m_ = link.m_;
rc_ = link.rc_;
I_ = link.I_;
return *this;
}
Matrixf<4, 4> robotics::Link::T(float q) {
if (type_ == R) {
if (qmin_ >= qmax_)
dh_.theta = q + offset_;
else
dh_.theta = math::limit(q + offset_, qmin_, qmax_);
} else {
if (qmin_ >= qmax_)
dh_.d = q + offset_;
else
dh_.d = math::limit(q + offset_, qmin_, qmax_);
}
return dh_.fkine();
}
bool robotics::check_ikine(Matrixf<4, 4> T)
{
const float L1=0.151,L3=0.350,L4=0.139;
Matrixf<3,1> Pe = T.block<3, 1>(0, 3); // p=T(1:3,4)
Matrixf<3,1> Ze = T.block<3, 1>(0, 2); // z=T(1:3,3)
//求解W点球形腕
Matrixf<3,1> Pw = Pe-L4*Ze;
float length = Pw.norm();
//满足构成三角形条件theta2才有解
if(length <= (L1+L3) && length >= (L3-L1))
return true;
else
return false;
}
Matrixf<5,2> robotics::my_analytic_ikine(Matrixf<4, 4> T)
{
const float L1=0.151,L3=0.350,L4=0.139;
Matrixf<3,1> Pe = T.block<3, 1>(0, 3); // p=T(1:3,4)
Matrixf<3,1> Ze = T.block<3, 1>(0, 2); // z=T(1:3,3)
//求解W点球形腕
Matrixf<3,1> Pw = Pe-L4*Ze;
//求解theta1
float theta_1 = atan2(Pw[1][0],Pw[0][0]);
//求解theta2
//L1^2 + L3^2 - 2*L1*L3*cos_th2 = norm(Pw)^2
float cos_th2 = (L1*L1 + L3*L3 - Pw.norm()*Pw.norm())/(2*L1*L3);
float theta_2 = acosf(cos_th2) ; //关节2 有PI/2的offset
//计算T02
DH_t l1_dh = {
.theta = theta_1,
.d = L1,
.a = 0,
.alpha = PI/2,
};
DH_t l2_dh = {
.theta = theta_2,
.d = 0,
.a = 0,
.alpha = PI/2,
};
Matrixf<4,4> T02 = l1_dh.fkine() * l2_dh.fkine();
Matrixf<4,4> T25 = invT(T02) * T;
//腕关节(theta_5)朝上 >0
float theta_30 = atan2(T25[1][2],T25[0][2]);
float theta_40 = atan2(sqrtf(T25[0][2]*T25[0][2] + T25[1][2]*T25[1][2]),T25[2][2]);
float theta_50 = atan2(T25[2][1],-T25[2][0]);
//腕关节(theta_5)朝下 <0
float theta_31 = atan2(-T25[1][2],-T25[0][2]);
float theta_41 = atan2(-sqrtf(T25[0][2]*T25[0][2] + T25[1][2]*T25[1][2]),T25[2][2]);
float theta_51 = atan2(-T25[2][1],T25[2][0]);
//
// float q_data[10] = {theta_1,theta_2 - PI/2,theta_30,theta_40,theta_50,
// theta_1,theta_2 - PI/2,theta_31,theta_41,theta_51};//关节2 有PI/2的offset
//
float q_data[10]={ theta_1,theta_1 ,
theta_2 - PI/2 , theta_2 - PI/2,
theta_30,theta_31 ,
theta_40 , theta_41 ,
theta_50,theta_51 };
Matrixf<5,2> ik_q(q_data);
return ik_q;
}
//末端标准正交球形腕求解
Matrixf<3,2> robotics::spherical_wrist_ikine(const Matrixf<3,3>& R,float theta_1,float theta_2)
{
const float L1=0.151,L3=0.350,L4=0;
//计算T02
DH_t l1_dh = {
.theta = theta_1,
.d = L1,
.a = 0,
.alpha = PI/2,
};
DH_t l2_dh = {
.theta = theta_2,
.d = 0,
.a = L3,
.alpha = PI/2,
};
Matrixf<4,4> T02 = l1_dh.fkine() * l2_dh.fkine();
Matrixf<4,4> T = r2t(R); //末端位置仅由前两轴决定 计算球形手腕时无需考虑位置
Matrixf<4,4> T25 = invT(T02) * T;
//腕关节(theta_5)朝上 >0
float theta_30 = atan2(T25[1][2],T25[0][2]);
float theta_40 = atan2(sqrtf(T25[0][2]*T25[0][2] + T25[1][2]*T25[1][2]),T25[2][2]);
float theta_50 = atan2(T25[2][1],-T25[2][0]);
//腕关节(theta_5)朝下 <0
float theta_31 = atan2(-T25[1][2],-T25[0][2]);
float theta_41 = atan2(-sqrtf(T25[0][2]*T25[0][2] + T25[1][2]*T25[1][2]),T25[2][2]);
float theta_51 = atan2(-T25[2][1],T25[2][0]);
float q_data[6]={ theta_30,theta_31,
theta_40,theta_41,
theta_50,theta_51 };
Matrixf<3,2> ik_q(q_data);
return ik_q;
}