257 lines
11 KiB
C
257 lines
11 KiB
C
/**
|
||
* @file chassis.c
|
||
* @author NeoZeng neozng1@hnu.edu.cn
|
||
* @brief 底盘应用,负责接收robot_cmd的控制命令并根据命令进行运动学解算,得到输出
|
||
* 注意底盘采取右手系,对于平面视图,底盘纵向运动的正前方为x正方向;横向运动的右侧为y正方向
|
||
*
|
||
* @version 0.1
|
||
* @date 2022-12-04
|
||
*
|
||
* @copyright Copyright (c) 2022
|
||
*
|
||
*/
|
||
|
||
#include "chassis.h"
|
||
#include "robot_def.h"
|
||
#include "dji_motor.h"
|
||
#include "super_cap.h"
|
||
#include "message_center.h"
|
||
#include "referee_task.h"
|
||
|
||
#include "general_def.h"
|
||
#include "bsp_dwt.h"
|
||
#include "referee_UI.h"
|
||
#include "arm_math.h"
|
||
|
||
/* 根据robot_def.h中的macro自动计算的参数 */
|
||
#define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f) // 半轴距
|
||
#define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f) // 半轮距
|
||
#define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI) // 轮子周长
|
||
|
||
/* 底盘应用包含的模块和信息存储,底盘是单例模式,因此不需要为底盘建立单独的结构体 */
|
||
#ifdef CHASSIS_BOARD // 如果是底盘板,使用板载IMU获取底盘转动角速度
|
||
#include "can_comm.h"
|
||
#include "ins_task.h"
|
||
static CANCommInstance *chasiss_can_comm; // 双板通信CAN comm
|
||
attitude_t *Chassis_IMU_data;
|
||
#endif // CHASSIS_BOARD
|
||
#ifdef ONE_BOARD
|
||
static Publisher_t *chassis_pub; // 用于发布底盘的数据
|
||
static Subscriber_t *chassis_sub; // 用于订阅底盘的控制命令
|
||
#endif // !ONE_BOARD
|
||
static Chassis_Ctrl_Cmd_s chassis_cmd_recv; // 底盘接收到的控制命令
|
||
static Chassis_Upload_Data_s chassis_feedback_data; // 底盘回传的反馈数据
|
||
|
||
static referee_info_t* referee_data; // 用于获取裁判系统的数据
|
||
static Referee_Interactive_info_t ui_data; // UI数据,将底盘中的数据传入此结构体的对应变量中,UI会自动检测是否变化,对应显示UI
|
||
|
||
static SuperCapInstance *cap; // 超级电容
|
||
static DJIMotorInstance *motor_lf, *motor_rf, *motor_lb, *motor_rb; // left right forward back
|
||
|
||
/* 用于自旋变速策略的时间变量 */
|
||
// static float t;
|
||
|
||
/* 私有函数计算的中介变量,设为静态避免参数传递的开销 */
|
||
static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘
|
||
static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅
|
||
|
||
void ChassisInit()
|
||
{
|
||
// 四个轮子的参数一样,改tx_id和反转标志位即可
|
||
Motor_Init_Config_s chassis_motor_config = {
|
||
.can_init_config.can_handle = &hcan1,
|
||
.controller_param_init_config = {
|
||
.speed_PID = {
|
||
.Kp = 10, // 4.5
|
||
.Ki = 0, // 0
|
||
.Kd = 0, // 0
|
||
.IntegralLimit = 3000,
|
||
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
||
.MaxOut = 12000,
|
||
},
|
||
.current_PID = {
|
||
.Kp = 0.5, // 0.4
|
||
.Ki = 0, // 0
|
||
.Kd = 0,
|
||
.IntegralLimit = 3000,
|
||
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
||
.MaxOut = 15000,
|
||
},
|
||
},
|
||
.controller_setting_init_config = {
|
||
.angle_feedback_source = MOTOR_FEED,
|
||
.speed_feedback_source = MOTOR_FEED,
|
||
.outer_loop_type = SPEED_LOOP,
|
||
.close_loop_type = SPEED_LOOP | CURRENT_LOOP,
|
||
},
|
||
.motor_type = M3508,
|
||
};
|
||
// @todo: 当前还没有设置电机的正反转,仍然需要手动添加reference的正负号,需要电机module的支持,待修改.
|
||
chassis_motor_config.can_init_config.tx_id = 2;
|
||
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
|
||
motor_lf = DJIMotorInit(&chassis_motor_config);
|
||
|
||
chassis_motor_config.can_init_config.tx_id = 1;
|
||
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE;
|
||
motor_rf = DJIMotorInit(&chassis_motor_config);
|
||
|
||
chassis_motor_config.can_init_config.tx_id = 4;
|
||
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE;
|
||
motor_lb = DJIMotorInit(&chassis_motor_config);
|
||
|
||
chassis_motor_config.can_init_config.tx_id = 3;
|
||
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
|
||
motor_rb = DJIMotorInit(&chassis_motor_config);
|
||
|
||
referee_data = UITaskInit(&huart6,&ui_data); // 裁判系统初始化,会同时初始化UI
|
||
|
||
SuperCap_Init_Config_s cap_conf = {
|
||
.can_config = {
|
||
.can_handle = &hcan2,
|
||
.tx_id = 0x302, // 超级电容默认接收id
|
||
.rx_id = 0x301, // 超级电容默认发送id,注意tx和rx在其他人看来是反的
|
||
}};
|
||
cap = SuperCapInit(&cap_conf); // 超级电容初始化
|
||
|
||
// 发布订阅初始化,如果为双板,则需要can comm来传递消息
|
||
#ifdef CHASSIS_BOARD
|
||
Chassis_IMU_data = INS_Init(); // 底盘IMU初始化
|
||
|
||
CANComm_Init_Config_s comm_conf = {
|
||
.can_config = {
|
||
.can_handle = &hcan2,
|
||
.tx_id = 0x311,
|
||
.rx_id = 0x312,
|
||
},
|
||
.recv_data_len = sizeof(Chassis_Ctrl_Cmd_s),
|
||
.send_data_len = sizeof(Chassis_Upload_Data_s),
|
||
};
|
||
chasiss_can_comm = CANCommInit(&comm_conf); // can comm初始化
|
||
#endif // CHASSIS_BOARD
|
||
|
||
#ifdef ONE_BOARD // 单板控制整车,则通过pubsub来传递消息
|
||
chassis_sub = SubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
|
||
chassis_pub = PubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
|
||
#endif // ONE_BOARD
|
||
}
|
||
//225+0+215-0
|
||
#define LF_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
|
||
#define RF_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
|
||
#define LB_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
|
||
#define RB_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
|
||
/**
|
||
* @brief 计算每个轮毂电机的输出,正运动学解算
|
||
* 用宏进行预替换减小开销,运动解算具体过程参考教程
|
||
*/
|
||
static void MecanumCalculate()
|
||
{
|
||
vt_lf = chassis_vx + chassis_vy - chassis_cmd_recv.wz * (LF_CENTER-1);
|
||
vt_rf = -chassis_vx + chassis_vy + chassis_cmd_recv.wz * (RF_CENTER-1);
|
||
vt_lb = chassis_vx - chassis_vy - chassis_cmd_recv.wz * (-LB_CENTER-1);
|
||
vt_rb = -chassis_vx - chassis_vy + chassis_cmd_recv.wz * (-RB_CENTER-1);
|
||
}
|
||
|
||
/**
|
||
* @brief 根据裁判系统和电容剩余容量对输出进行限制并设置电机参考值
|
||
*
|
||
*/
|
||
static void LimitChassisOutput()
|
||
{
|
||
// 功率限制待添加
|
||
// referee_data->PowerHeatData.chassis_power;
|
||
// referee_data->PowerHeatData.chassis_power_buffer;
|
||
|
||
// 完成功率限制后进行电机参考输入设定
|
||
DJIMotorSetRef(motor_lf, vt_lf);
|
||
DJIMotorSetRef(motor_rf, vt_rf);
|
||
DJIMotorSetRef(motor_lb, vt_lb);
|
||
DJIMotorSetRef(motor_rb, vt_rb);
|
||
}
|
||
|
||
/**
|
||
* @brief 根据每个轮子的速度反馈,计算底盘的实际运动速度,逆运动解算
|
||
* 对于双板的情况,考虑增加来自底盘板IMU的数据
|
||
*
|
||
*/
|
||
static void EstimateSpeed()
|
||
{
|
||
// 根据电机速度和陀螺仪的角速度进行解算,还可以利用加速度计判断是否打滑(如果有)
|
||
// chassis_feedback_data.vx vy wz =
|
||
// ...
|
||
}
|
||
|
||
/* 机器人底盘控制核心任务 */
|
||
void ChassisTask()
|
||
{
|
||
// 后续增加没收到消息的处理(双板的情况)
|
||
// 获取新的控制信息
|
||
#ifdef ONE_BOARD
|
||
SubGetMessage(chassis_sub, &chassis_cmd_recv);
|
||
#endif
|
||
#ifdef CHASSIS_BOARD
|
||
chassis_cmd_recv = *(Chassis_Ctrl_Cmd_s *)CANCommGet(chasiss_can_comm);
|
||
#endif // CHASSIS_BOARD
|
||
|
||
if (chassis_cmd_recv.chassis_mode == CHASSIS_ZERO_FORCE)
|
||
{ // 如果出现重要模块离线或遥控器设置为急停,让电机停止
|
||
DJIMotorStop(motor_lf);
|
||
DJIMotorStop(motor_rf);
|
||
DJIMotorStop(motor_lb);
|
||
DJIMotorStop(motor_rb);
|
||
}
|
||
else
|
||
{ // 正常工作
|
||
DJIMotorEnable(motor_lf);
|
||
DJIMotorEnable(motor_rf);
|
||
DJIMotorEnable(motor_lb);
|
||
DJIMotorEnable(motor_rb);
|
||
}
|
||
|
||
// 根据控制模式设定旋转速度
|
||
switch (chassis_cmd_recv.chassis_mode)
|
||
{
|
||
case CHASSIS_NO_FOLLOW: // 底盘不旋转,但维持全向机动,一般用于调整云台姿态
|
||
chassis_cmd_recv.wz = 0;
|
||
break;
|
||
case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出
|
||
chassis_cmd_recv.wz = 1.5f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle);
|
||
break;
|
||
case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
|
||
chassis_cmd_recv.wz = 400;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
|
||
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
|
||
static float sin_theta, cos_theta;
|
||
cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
|
||
sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
|
||
chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta;
|
||
chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta;
|
||
|
||
// 根据控制模式进行正运动学解算,计算底盘输出
|
||
MecanumCalculate();
|
||
|
||
// 根据裁判系统的反馈数据和电容数据对输出限幅并设定闭环参考值
|
||
LimitChassisOutput();
|
||
|
||
// 根据电机的反馈速度和IMU(如果有)计算真实速度
|
||
EstimateSpeed();
|
||
|
||
// // 获取裁判系统数据 建议将裁判系统与底盘分离,所以此处数据应使用消息中心发送
|
||
// // 我方颜色id小于7是红色,大于7是蓝色,注意这里发送的是对方的颜色, 0:blue , 1:red
|
||
// chassis_feedback_data.enemy_color = referee_data->GameRobotState.robot_id > 7 ? 1 : 0;
|
||
// // 当前只做了17mm热量的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况
|
||
// chassis_feedback_data.bullet_speed = referee_data->GameRobotState.shooter_id1_17mm_speed_limit;
|
||
// chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0;
|
||
|
||
// 推送反馈消息
|
||
#ifdef ONE_BOARD
|
||
PubPushMessage(chassis_pub, (void *)&chassis_feedback_data);
|
||
#endif
|
||
#ifdef CHASSIS_BOARD
|
||
CANCommSend(chasiss_can_comm, (void *)&chassis_feedback_data);
|
||
#endif // CHASSIS_BOARD
|
||
} |