basic_framework/application/chassis/chassis.c

304 lines
12 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @file chassis.c
* @author NeoZeng neozng1@hnu.edu.cn
* @brief 底盘应用,负责接收robot_cmd的控制命令并根据命令进行运动学解算,得到输出
* 注意底盘采取右手系,对于平面视图,底盘纵向运动的正前方为x正方向;横向运动的右侧为y正方向
*
* @version 0.1
* @date 2022-12-04
*
* @copyright Copyright (c) 2022
*
*/
#include "chassis.h"
#include "robot_def.h"
#include "dji_motor.h"
#include "super_cap.h"
#include "message_center.h"
#include "referee_task.h"
#include "general_def.h"
#include "bsp_dwt.h"
#include "referee_UI.h"
#include "arm_math.h"
#include "vofa.h"
/* 根据robot_def.h中的macro自动计算的参数 */
#define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f) // 半轴距
#define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f) // 半轮距
#define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI) // 轮子周长
#define P_MAX 43.0f //功率控制 单位W
/* 底盘应用包含的模块和信息存储,底盘是单例模式,因此不需要为底盘建立单独的结构体 */
#ifdef CHASSIS_BOARD // 如果是底盘板,使用板载IMU获取底盘转动角速度
#include "can_comm.h"
#include "ins_task.h"
static CANCommInstance *chasiss_can_comm; // 双板通信CAN comm
attitude_t *Chassis_IMU_data;
#endif // CHASSIS_BOARD
#ifdef ONE_BOARD
static Publisher_t *chassis_pub; // 用于发布底盘的数据
static Subscriber_t *chassis_sub; // 用于订阅底盘的控制命令
#endif // !ONE_BOARD
static Chassis_Ctrl_Cmd_s chassis_cmd_recv; // 底盘接收到的控制命令
static Chassis_Upload_Data_s chassis_feedback_data; // 底盘回传的反馈数据
static SuperCapInstance *cap; // 超级电容
static DJIMotorInstance *motor_lf, *motor_rf, *motor_lb, *motor_rb; // left right forward back
/* 用于自旋变速策略的时间变量 */
// static float t;
/* 私有函数计算的中介变量,设为静态避免参数传递的开销 */
static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘
static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅
void ChassisInit() {
// 四个轮子的参数一样,改tx_id和反转标志位即可
Motor_Init_Config_s chassis_motor_config = {
.can_init_config.can_handle = &hcan1,
.controller_param_init_config = {
.speed_PID = {
.Kp = 4.0f, // 4.5
.Ki = 3.0f, // 1.5
.Kd = 0, // 0
.IntegralLimit = 3000,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.MaxOut = 12000,
},
.current_PID = {
.Kp = 1, // 0.4
.Ki = 0, // 0
.Kd = 0,
.IntegralLimit = 3000,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.MaxOut = 15000,
},
},
.controller_setting_init_config = {
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
.outer_loop_type = SPEED_LOOP,
.close_loop_type = SPEED_LOOP, //| CURRENT_LOOP,
.power_limit_flag = POWER_LIMIT_ON,
},
.motor_type = M3508,
};
// @todo: 当前还没有设置电机的正反转,仍然需要手动添加reference的正负号,需要电机module的支持,待修改.
chassis_motor_config.can_init_config.tx_id = 1;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
motor_rf = DJIMotorInit(&chassis_motor_config);
chassis_motor_config.can_init_config.tx_id = 2;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
motor_lf = DJIMotorInit(&chassis_motor_config);
chassis_motor_config.can_init_config.tx_id = 3;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
motor_lb = DJIMotorInit(&chassis_motor_config);
chassis_motor_config.can_init_config.tx_id = 4;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
motor_rb = DJIMotorInit(&chassis_motor_config);
SuperCap_Init_Config_s cap_conf = {
.can_config = {
.can_handle = &hcan2,
.tx_id = 0x302, // 超级电容默认接收id
.rx_id = 0x301, // 超级电容默认发送id,注意tx和rx在其他人看来是反的
}};
cap = SuperCapInit(&cap_conf); // 超级电容初始化
// PowerMeter_Init_Config_s
// 发布订阅初始化,如果为双板,则需要can comm来传递消息
#ifdef CHASSIS_BOARD
Chassis_IMU_data = INS_Init(); // 底盘IMU初始化
CANComm_Init_Config_s comm_conf = {
.can_config = {
.can_handle = &hcan2,
.tx_id = 0x311,
.rx_id = 0x312,
},
.recv_data_len = sizeof(Chassis_Ctrl_Cmd_s),
.send_data_len = sizeof(Chassis_Upload_Data_s),
};
chasiss_can_comm = CANCommInit(&comm_conf); // can comm初始化
#endif // CHASSIS_BOARD
#ifdef ONE_BOARD // 单板控制整车,则通过pubsub来传递消息
chassis_sub = SubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
chassis_pub = PubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
#endif // ONE_BOARD
}
#define LF_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define RF_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define LB_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define RB_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
/**
* @brief 计算每个轮毂电机的输出,正运动学解算
* 用宏进行预替换减小开销,运动解算具体过程参考教程
*/
static void MecanumCalculate() {
vt_lf = -chassis_vx - chassis_vy - chassis_cmd_recv.wz * LF_CENTER;
vt_rf = -chassis_vx + chassis_vy - chassis_cmd_recv.wz * RF_CENTER;
vt_lb = chassis_vx - chassis_vy - chassis_cmd_recv.wz * LB_CENTER;
vt_rb = chassis_vx + chassis_vy - chassis_cmd_recv.wz * RB_CENTER;
}
//全向轮解算
static void OmniCalculate() {
vt_rf = -(HALF_TRACK_WIDTH + HALF_WHEEL_BASE) * chassis_cmd_recv.wz + chassis_vx - chassis_vy;
vt_rb = -(HALF_TRACK_WIDTH + HALF_WHEEL_BASE) * chassis_cmd_recv.wz - chassis_vx - chassis_vy;
vt_lb = -(HALF_TRACK_WIDTH + HALF_WHEEL_BASE) * chassis_cmd_recv.wz - chassis_vx + chassis_vy;
vt_lf = -(HALF_TRACK_WIDTH + HALF_WHEEL_BASE) * chassis_cmd_recv.wz + chassis_vx + chassis_vy;
vt_rf /= (WHEEL_BASE * 1.414f);
vt_rb /= (WHEEL_BASE * 1.414f);
vt_lb /= (WHEEL_BASE * 1.414f);
vt_lf /= (WHEEL_BASE * 1.414f);
}
static const float motor_power_K[3] = {1.6301e-6f,5.7501e-7f,2.5863e-7f};
///依据3508电机功率模型预测电机输出功率
static float EstimatePower(DJIMotorInstance* chassis_motor)
{
float I_cmd = chassis_motor->motor_controller.current_PID.Output;
float w = chassis_motor->measure.speed_aps /6 ;//aps to rpm
float power = motor_power_K[0] * I_cmd * w + motor_power_K[1]*w*w + motor_power_K[2]*I_cmd*I_cmd;
return power;
}
float vofa_send_data[6];
/**
* @brief 根据裁判系统和电容剩余容量对输出进行限制并设置电机参考值
*
*/
static void LimitChassisOutput()
{
float P_cmd = motor_rf->motor_controller.motor_power_predict +
motor_rb->motor_controller.motor_power_predict +
motor_lb->motor_controller.motor_power_predict +
motor_lf->motor_controller.motor_power_predict + 3.6f;
float K = (float)(chassis_cmd_recv.chassis_power_limit - 5) / P_cmd;
//vofa_send_data[2] = P_cmd;
motor_rf->motor_controller.motor_power_scale = K;
motor_rb->motor_controller.motor_power_scale = K;
motor_lf->motor_controller.motor_power_scale = K;
motor_lb->motor_controller.motor_power_scale = K;
{
DJIMotorSetRef(motor_lf, vt_lf);
DJIMotorSetRef(motor_rf, vt_rf);
DJIMotorSetRef(motor_lb, vt_lb);
DJIMotorSetRef(motor_rb, vt_rb);
}
}
/**
* @brief 根据每个轮子的速度反馈,计算底盘的实际运动速度,逆运动解算
* 对于双板的情况,考虑增加来自底盘板IMU的数据
*
*/
static void EstimateSpeed() {
// 根据电机速度和陀螺仪的角速度进行解算,还可以利用加速度计判断是否打滑(如果有)
// chassis_feedback_data.vx vy wz =
// ...
}
/* 机器人底盘控制核心任务 */
void ChassisTask() {
// 后续增加没收到消息的处理(双板的情况)
// 获取新的控制信息
#ifdef ONE_BOARD
SubGetMessage(chassis_sub, &chassis_cmd_recv);
#endif
#ifdef CHASSIS_BOARD
chassis_cmd_recv = *(Chassis_Ctrl_Cmd_s *)CANCommGet(chasiss_can_comm);
#endif // CHASSIS_BOARD
if (chassis_cmd_recv.chassis_mode == CHASSIS_ZERO_FORCE) { // 如果出现重要模块离线或遥控器设置为急停,让电机停止
DJIMotorStop(motor_lf);
DJIMotorStop(motor_rf);
DJIMotorStop(motor_lb);
DJIMotorStop(motor_rb);
} else { // 正常工作
DJIMotorEnable(motor_lf);
DJIMotorEnable(motor_rf);
DJIMotorEnable(motor_lb);
DJIMotorEnable(motor_rb);
}
// 根据控制模式设定旋转速度
switch (chassis_cmd_recv.chassis_mode) {
case CHASSIS_NO_FOLLOW: // 底盘不旋转,但维持全向机动,一般用于调整云台姿态
chassis_cmd_recv.wz = 0;
break;
case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出
chassis_cmd_recv.wz = 10.0f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle);
break;
case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
chassis_cmd_recv.wz = 30000;
break;
default:
break;
}
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
static float sin_theta, cos_theta;
cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta;
chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta;
// 根据控制模式进行正运动学解算,计算底盘输出
//MecanumCalculate();
OmniCalculate();
// 根据裁判系统的反馈数据和电容数据对输出限幅并设定闭环参考值
LimitChassisOutput();
// float vofa_send_data[2];
// vofa_send_data[0] = motor_lb->motor_controller.speed_PID.Ref;
// vofa_send_data[1] = motor_lb->motor_controller.speed_PID.Measure;
// vofa_justfloat_output(vofa_send_data, 8, &huart1);
// 根据电机的反馈速度和IMU(如果有)计算真实速度
EstimateSpeed();
//todo: 裁判系统信息移植到消息中心发送
// 获取裁判系统数据 建议将裁判系统与底盘分离,所以此处数据应使用消息中心发送
// 发送敌方方颜色id
//chassis_feedback_data.enemy_color = !referee_data->referee_id.Robot_Color;
// 当前只做了17mm热量的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况
//chassis_feedback_data.bullet_speed = referee_data->GameRobotState.shooter_id1_17mm_speed_limit;
// chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0;
// 推送反馈消息
#ifdef ONE_BOARD
PubPushMessage(chassis_pub, (void *) &chassis_feedback_data);
#endif
#ifdef CHASSIS_BOARD
CANCommSend(chasiss_can_comm, (void *)&chassis_feedback_data);
#endif // CHASSIS_BOARD
}