Compare commits

...

2 Commits

4 changed files with 88 additions and 103 deletions

View File

@ -27,5 +27,5 @@ uint8_t *USBInit(USB_Init_Config_s usb_conf)
void USBTransmit(uint8_t *buffer, uint16_t len) void USBTransmit(uint8_t *buffer, uint16_t len)
{ {
//CDC_Transmit_FS(buffer, len); // 发送 CDC_Transmit_FS(buffer, len); // 发送
} }

View File

@ -24,6 +24,7 @@ static uint16_t crc_tab16[256] = {
0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c,
0x3de3, 0x2c6a, 0x1ef1, 0x0f78}; 0x3de3, 0x2c6a, 0x1ef1, 0x0f78};
/* /*
* uint16_t crc_16( const unsigned char *input_str, size_t num_bytes ); * uint16_t crc_16( const unsigned char *input_str, size_t num_bytes );
* *
@ -32,21 +33,29 @@ static uint16_t crc_tab16[256] = {
* *
* *
*/ */
uint16_t crc_16(const uint8_t *input_str, uint16_t num_bytes) uint16_t crc_16(const uint8_t *input_str, uint16_t num_bytes) {
{ // uint16_t crc;
uint16_t crc; // const uint8_t *ptr;
const uint8_t *ptr; // uint16_t a;
uint16_t a; //// if (!crc_tab16_init)
// if (!crc_tab16_init) //// init_crc16_tab();
// init_crc16_tab(); // crc = CRC_START_16;
crc = CRC_START_16; // ptr = input_str;
ptr = input_str; // if (ptr != NULL)
if (ptr != NULL) // for (a = 0; a < num_bytes; a++) {
for (a = 0; a < num_bytes; a++) // crc = (crc >> 8) ^ crc_tab16[(crc ^ (uint16_t) *ptr++) & 0x00FF];
{ // }
crc = (crc >> 8) ^ crc_tab16[(crc ^ (uint16_t)*ptr++) & 0x00FF]; // return crc;
uint8_t ch_data;
uint16_t wCRC = 0xFFFF;
if (input_str == NULL) return 0xFFFF;
while (num_bytes--) {
ch_data = *input_str++;
(wCRC) =
((uint16_t)(wCRC) >> 8) ^ crc_tab16[((uint16_t)(wCRC) ^ (uint16_t)(ch_data)) & 0x00ff];
} }
return crc; return wCRC;
} }
/* /*
@ -57,8 +66,7 @@ uint16_t crc_16(const uint8_t *input_str, uint16_t num_bytes)
* *
*/ */
uint16_t crc_modbus(const uint8_t *input_str, uint16_t num_bytes) uint16_t crc_modbus(const uint8_t *input_str, uint16_t num_bytes) {
{
uint16_t crc; uint16_t crc;
const uint8_t *ptr; const uint8_t *ptr;
uint16_t a; uint16_t a;
@ -69,8 +77,7 @@ uint16_t crc_modbus(const uint8_t *input_str, uint16_t num_bytes)
crc = CRC_START_MODBUS; crc = CRC_START_MODBUS;
ptr = input_str; ptr = input_str;
if (ptr != NULL) if (ptr != NULL)
for (a = 0; a < num_bytes; a++) for (a = 0; a < num_bytes; a++) {
{
crc = (crc >> 8) ^ crc_tab16[(crc ^ (uint16_t) *ptr++) & 0x00FF]; crc = (crc >> 8) ^ crc_tab16[(crc ^ (uint16_t) *ptr++) & 0x00FF];
} }
@ -83,8 +90,7 @@ uint16_t crc_modbus(const uint8_t *input_str, uint16_t num_bytes)
*update_crc_16() *update_crc_16()
* *
*/ */
uint16_t update_crc_16(uint16_t crc, uint8_t c) uint16_t update_crc_16(uint16_t crc, uint8_t c) {
{
if (!crc_tab16_init) if (!crc_tab16_init)
init_crc16_tab(); init_crc16_tab();
return (crc >> 8) ^ crc_tab16[(crc ^ (uint16_t) c) & 0x00FF]; return (crc >> 8) ^ crc_tab16[(crc ^ (uint16_t) c) & 0x00FF];
@ -98,18 +104,15 @@ uint16_t update_crc_16(uint16_t crc, uint8_t c)
*init_crc16_tab() *init_crc16_tab()
* *
*/ */
void init_crc16_tab(void) void init_crc16_tab(void) {
{
uint16_t i; uint16_t i;
uint16_t j; uint16_t j;
uint16_t crc; uint16_t crc;
uint16_t c; uint16_t c;
for (i = 0; i < 256; i++) for (i = 0; i < 256; i++) {
{
crc = 0; crc = 0;
c = i; c = i;
for (j = 0; j < 8; j++) for (j = 0; j < 8; j++) {
{
if ((crc ^ c) & 0x0001) if ((crc ^ c) & 0x0001)
crc = (crc >> 1) ^ CRC_POLY_16; crc = (crc >> 1) ^ CRC_POLY_16;
else else
@ -121,11 +124,9 @@ void init_crc16_tab(void)
crc_tab16_init = 1; crc_tab16_init = 1;
} }
uint32_t VerifyCRC16CheckSum(uint8_t *pchMessage, uint32_t dwLength) uint32_t VerifyCRC16CheckSum(uint8_t *pchMessage, uint32_t dwLength) {
{
uint16_t wExpected = 0; uint16_t wExpected = 0;
if ((pchMessage == NULL) || (dwLength <= 2)) if ((pchMessage == NULL) || (dwLength <= 2)) {
{
return 0; return 0;
} }
wExpected = crc_16(pchMessage, dwLength - 2); wExpected = crc_16(pchMessage, dwLength - 2);

View File

@ -36,8 +36,7 @@ static float RefTemp = 40; // 恒温设定温度
static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3]); static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3]);
static void IMUPWMSet(uint16_t pwm) static void IMUPWMSet(uint16_t pwm) {
{
__HAL_TIM_SetCompare(&htim10, TIM_CHANNEL_1, pwm); __HAL_TIM_SetCompare(&htim10, TIM_CHANNEL_1, pwm);
} }
@ -45,21 +44,18 @@ static void IMUPWMSet(uint16_t pwm)
* @brief * @brief
* *
*/ */
static void IMU_Temperature_Ctrl(void) static void IMU_Temperature_Ctrl(void) {
{
PIDCalculate(&TempCtrl, BMI088.Temperature, RefTemp); PIDCalculate(&TempCtrl, BMI088.Temperature, RefTemp);
IMUPWMSet(float_constrain(float_rounding(TempCtrl.Output), 0, UINT32_MAX)); IMUPWMSet(float_constrain(float_rounding(TempCtrl.Output), 0, UINT32_MAX));
} }
// 使用加速度计的数据初始化Roll和Pitch,而Yaw置0,这样可以避免在初始时候的姿态估计误差 // 使用加速度计的数据初始化Roll和Pitch,而Yaw置0,这样可以避免在初始时候的姿态估计误差
static void InitQuaternion(float *init_q4) static void InitQuaternion(float *init_q4) {
{
float acc_init[3] = {0}; float acc_init[3] = {0};
float gravity_norm[3] = {0, 0, 1}; // 导航系重力加速度矢量,归一化后为(0,0,1) float gravity_norm[3] = {0, 0, 1}; // 导航系重力加速度矢量,归一化后为(0,0,1)
float axis_rot[3] = {0}; // 旋转轴 float axis_rot[3] = {0}; // 旋转轴
// 读取100次加速度计数据,取平均值作为初始值 // 读取100次加速度计数据,取平均值作为初始值
for (uint8_t i = 0; i < 100; ++i) for (uint8_t i = 0; i < 100; ++i) {
{
BMI088_Read(&BMI088); BMI088_Read(&BMI088);
acc_init[X] += BMI088.Accel[X]; acc_init[X] += BMI088.Accel[X];
acc_init[Y] += BMI088.Accel[Y]; acc_init[Y] += BMI088.Accel[Y];
@ -78,8 +74,7 @@ static void InitQuaternion(float *init_q4)
init_q4[i + 1] = axis_rot[i] * sinf(angle / 2.0f); // 轴角公式,第三轴为0(没有z轴分量) init_q4[i + 1] = axis_rot[i] * sinf(angle / 2.0f); // 轴角公式,第三轴为0(没有z轴分量)
} }
attitude_t *INS_Init(void) attitude_t *INS_Init(void) {
{
if (!INS.init) if (!INS.init)
INS.init = 1; INS.init = 1;
else else
@ -87,8 +82,7 @@ attitude_t *INS_Init(void)
HAL_TIM_PWM_Start(&htim10, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim10, TIM_CHANNEL_1);
while (BMI088Init(&hspi1, 1) != BMI088_NO_ERROR) while (BMI088Init(&hspi1, 1) != BMI088_NO_ERROR);
;
IMU_Param.scale[X] = 1; IMU_Param.scale[X] = 1;
IMU_Param.scale[Y] = 1; IMU_Param.scale[Y] = 1;
IMU_Param.scale[Z] = 1; IMU_Param.scale[Z] = 1;
@ -117,8 +111,7 @@ attitude_t *INS_Init(void)
} }
/* 注意以1kHz的频率运行此任务 */ /* 注意以1kHz的频率运行此任务 */
void INS_Task(void) void INS_Task(void) {
{
static uint32_t count = 0; static uint32_t count = 0;
const float gravity[3] = {0, 0, 9.81f}; const float gravity[3] = {0, 0, 9.81f};
@ -126,8 +119,7 @@ void INS_Task(void)
t += dt; t += dt;
// ins update // ins update
if ((count % 1) == 0) if ((count % 1) == 0) {
{
BMI088_Read(&BMI088); BMI088_Read(&BMI088);
INS.Accel[X] = BMI088.Accel[X]; INS.Accel[X] = BMI088.Accel[X];
@ -159,7 +151,8 @@ void INS_Task(void)
EarthFrameToBodyFrame(gravity, gravity_b, INS.q); EarthFrameToBodyFrame(gravity, gravity_b, INS.q);
for (uint8_t i = 0; i < 3; ++i) // 同样过一个低通滤波 for (uint8_t i = 0; i < 3; ++i) // 同样过一个低通滤波
{ {
INS.MotionAccel_b[i] = (INS.Accel[i] - gravity_b[i]) * dt / (INS.AccelLPF + dt) + INS.MotionAccel_b[i] * INS.AccelLPF / (INS.AccelLPF + dt); INS.MotionAccel_b[i] = (INS.Accel[i] - gravity_b[i]) * dt / (INS.AccelLPF + dt) +
INS.MotionAccel_b[i] * INS.AccelLPF / (INS.AccelLPF + dt);
} }
BodyFrameToEarthFrame(INS.MotionAccel_b, INS.MotionAccel_n, INS.q); // 转换回导航系n BodyFrameToEarthFrame(INS.MotionAccel_b, INS.MotionAccel_n, INS.q); // 转换回导航系n
@ -169,18 +162,16 @@ void INS_Task(void)
INS.YawTotalAngle = QEKF_INS.YawTotalAngle; INS.YawTotalAngle = QEKF_INS.YawTotalAngle;
//VisionSetAltitude(INS.Yaw, INS.Pitch, INS.Roll); //VisionSetAltitude(INS.Yaw, INS.Pitch, INS.Roll);
VisionSetAltitude(INS.Yaw, INS.Pitch); VisionSetAltitude(INS.Yaw * PI / 180, INS.Pitch * PI / 180);
} }
// temperature control // temperature control
if ((count % 2) == 0) if ((count % 2) == 0) {
{
// 500hz // 500hz
IMU_Temperature_Ctrl(); IMU_Temperature_Ctrl();
} }
if ((count++ % 1000) == 0) if ((count++ % 1000) == 0) {
{
// 1Hz 可以加入monitor函数,检查IMU是否正常运行/离线 // 1Hz 可以加入monitor函数,检查IMU是否正常运行/离线
} }
} }
@ -191,8 +182,7 @@ void INS_Task(void)
* @param[2] vector in EarthFrame * @param[2] vector in EarthFrame
* @param[3] quaternion * @param[3] quaternion
*/ */
void BodyFrameToEarthFrame(const float *vecBF, float *vecEF, float *q) void BodyFrameToEarthFrame(const float *vecBF, float *vecEF, float *q) {
{
vecEF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecBF[0] + vecEF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecBF[0] +
(q[1] * q[2] - q[0] * q[3]) * vecBF[1] + (q[1] * q[2] - q[0] * q[3]) * vecBF[1] +
(q[1] * q[3] + q[0] * q[2]) * vecBF[2]); (q[1] * q[3] + q[0] * q[2]) * vecBF[2]);
@ -212,8 +202,7 @@ void BodyFrameToEarthFrame(const float *vecBF, float *vecEF, float *q)
* @param[2] vector in BodyFrame * @param[2] vector in BodyFrame
* @param[3] quaternion * @param[3] quaternion
*/ */
void EarthFrameToBodyFrame(const float *vecEF, float *vecBF, float *q) void EarthFrameToBodyFrame(const float *vecEF, float *vecBF, float *q) {
{
vecBF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecEF[0] + vecBF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecEF[0] +
(q[1] * q[2] + q[0] * q[3]) * vecEF[1] + (q[1] * q[2] + q[0] * q[3]) * vecEF[1] +
(q[1] * q[3] - q[0] * q[2]) * vecEF[2]); (q[1] * q[3] - q[0] * q[2]) * vecEF[2]);
@ -235,16 +224,14 @@ void EarthFrameToBodyFrame(const float *vecEF, float *vecBF, float *q)
* @param gyro * @param gyro
* @param accel * @param accel
*/ */
static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3]) static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3]) {
{
static float lastYawOffset, lastPitchOffset, lastRollOffset; static float lastYawOffset, lastPitchOffset, lastRollOffset;
static float c_11, c_12, c_13, c_21, c_22, c_23, c_31, c_32, c_33; static float c_11, c_12, c_13, c_21, c_22, c_23, c_31, c_32, c_33;
float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll; float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll;
if (fabsf(param->Yaw - lastYawOffset) > 0.001f || if (fabsf(param->Yaw - lastYawOffset) > 0.001f ||
fabsf(param->Pitch - lastPitchOffset) > 0.001f || fabsf(param->Pitch - lastPitchOffset) > 0.001f ||
fabsf(param->Roll - lastRollOffset) > 0.001f || param->flag) fabsf(param->Roll - lastRollOffset) > 0.001f || param->flag) {
{
cosYaw = arm_cos_f32(param->Yaw / 57.295779513f); cosYaw = arm_cos_f32(param->Yaw / 57.295779513f);
cosPitch = arm_cos_f32(param->Pitch / 57.295779513f); cosPitch = arm_cos_f32(param->Pitch / 57.295779513f);
cosRoll = arm_cos_f32(param->Roll / 57.295779513f); cosRoll = arm_cos_f32(param->Roll / 57.295779513f);
@ -304,8 +291,7 @@ static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[
/** /**
* @brief Update quaternion * @brief Update quaternion
*/ */
void QuaternionUpdate(float *q, float gx, float gy, float gz, float dt) void QuaternionUpdate(float *q, float gx, float gy, float gz, float dt) {
{
float qa, qb, qc; float qa, qb, qc;
gx *= 0.5f * dt; gx *= 0.5f * dt;
@ -323,8 +309,7 @@ void QuaternionUpdate(float *q, float gx, float gy, float gz, float dt)
/** /**
* @brief Convert quaternion to eular angle * @brief Convert quaternion to eular angle
*/ */
void QuaternionToEularAngle(float *q, float *Yaw, float *Pitch, float *Roll) void QuaternionToEularAngle(float *q, float *Yaw, float *Pitch, float *Roll) {
{
*Yaw = atan2f(2.0f * (q[0] * q[3] + q[1] * q[2]), 2.0f * (q[0] * q[0] + q[1] * q[1]) - 1.0f) * 57.295779513f; *Yaw = atan2f(2.0f * (q[0] * q[3] + q[1] * q[2]), 2.0f * (q[0] * q[0] + q[1] * q[1]) - 1.0f) * 57.295779513f;
*Pitch = atan2f(2.0f * (q[0] * q[1] + q[2] * q[3]), 2.0f * (q[0] * q[0] + q[3] * q[3]) - 1.0f) * 57.295779513f; *Pitch = atan2f(2.0f * (q[0] * q[1] + q[2] * q[3]), 2.0f * (q[0] * q[0] + q[3] * q[3]) - 1.0f) * 57.295779513f;
*Roll = asinf(2.0f * (q[0] * q[2] - q[1] * q[3])) * 57.295779513f; *Roll = asinf(2.0f * (q[0] * q[2] - q[1] * q[3])) * 57.295779513f;
@ -333,8 +318,7 @@ void QuaternionToEularAngle(float *q, float *Yaw, float *Pitch, float *Roll)
/** /**
* @brief Convert eular angle to quaternion * @brief Convert eular angle to quaternion
*/ */
void EularAngleToQuaternion(float Yaw, float Pitch, float Roll, float *q) void EularAngleToQuaternion(float Yaw, float Pitch, float Roll, float *q) {
{
float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll; float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll;
Yaw /= 57.295779513f; Yaw /= 57.295779513f;
Pitch /= 57.295779513f; Pitch /= 57.295779513f;

View File

@ -30,6 +30,6 @@ void vofa_justfloat_output(float *data, uint8_t num , UART_HandleTypeDef *huart
send_data[4 * num + 2] = 0x80; send_data[4 * num + 2] = 0x80;
send_data[4 * num + 3] = 0x7f; //加上协议要求的4个尾巴 send_data[4 * num + 3] = 0x7f; //加上协议要求的4个尾巴
//HAL_UART_Transmit(huart, (uint8_t *)send_data, 4 * num + 4, 100); HAL_UART_Transmit(huart, (uint8_t *)send_data, 4 * num + 4, 100);
CDC_Transmit_FS((uint8_t *)send_data,4 * num + 4); //CDC_Transmit_FS((uint8_t *)send_data,4 * num + 4);
} }