yaw,pitch基本完成

This commit is contained in:
shmily744 2024-01-17 17:46:36 +08:00
parent 07331f23e3
commit 18988c5770
7 changed files with 203 additions and 197 deletions

View File

@ -63,9 +63,9 @@ void ChassisInit() {
.can_init_config.can_handle = &hcan1,
.controller_param_init_config = {
.speed_PID = {
.Kp = 1.0, // 4.5
.Ki = 0, // 1.5
.Kd = 0, // 0
.Kp = 4.0f, // 4.5
.Ki = 8.0f, // 1.5
.Kd = 0.0015, // 0
.IntegralLimit = 3000,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.MaxOut = 12000,
@ -221,7 +221,7 @@ void ChassisTask() {
chassis_cmd_recv.wz = 0;
break;
case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出
chassis_cmd_recv.wz = -1.5f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle);
chassis_cmd_recv.wz = 10.0f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle);
break;
case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
chassis_cmd_recv.wz = 4000;
@ -233,10 +233,10 @@ void ChassisTask() {
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
static float sin_theta, cos_theta;
// cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
// sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
sin_theta = 0;
cos_theta = 1;
cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
// sin_theta = 0;
// cos_theta = 1;
chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta;
chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta;

View File

@ -47,8 +47,7 @@ static Shoot_Upload_Data_s shoot_fetch_data; // 从发射获取的反馈信息
static Robot_Status_e robot_state; // 机器人整体工作状态
void RobotCMDInit()
{
void RobotCMDInit() {
rc_data = RemoteControlInit(&huart3); // 修改为对应串口,注意如果是自研板dbus协议串口需选用添加了反相器的那个
vision_recv_data = VisionInit(&huart1); // 视觉通信串口
@ -83,8 +82,7 @@ void RobotCMDInit()
* 0~360,
*
*/
static void CalcOffsetAngle()
{
static void CalcOffsetAngle() {
// 别名angle提高可读性,不然太长了不好看,虽然基本不会动这个函数
static float angle;
angle = gimbal_fetch_data.yaw_motor_single_round_angle; // 从云台获取的当前yaw电机单圈角度
@ -109,15 +107,13 @@ static void CalcOffsetAngle()
* @brief ()
*
*/
static void RemoteControlSet()
{
static void RemoteControlSet() {
// 控制底盘和云台运行模式,云台待添加,云台是否始终使用IMU数据?
if (switch_is_down(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[下],底盘跟随云台
{
chassis_cmd_send.chassis_mode = CHASSIS_ROTATE;
chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW;
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
}
else if (switch_is_mid(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[中],底盘和云台分离,底盘保持不转动
} else if (switch_is_mid(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[中],底盘和云台分离,底盘保持不转动
{
chassis_cmd_send.chassis_mode = CHASSIS_NO_FOLLOW;
gimbal_cmd_send.gimbal_mode = GIMBAL_FREE_MODE;
@ -132,20 +128,22 @@ static void RemoteControlSet()
// 左侧开关状态为[下],或视觉未识别到目标,纯遥控器拨杆控制
if (switch_is_down(rc_data[TEMP].rc.switch_left))//|| vision_recv_data->target_state == NO_TARGET
{ // 按照摇杆的输出大小进行角度增量,增益系数需调整
gimbal_cmd_send.yaw += 0.005f * (float)rc_data[TEMP].rc.rocker_l_;
gimbal_cmd_send.pitch += 0.001f * (float)rc_data[TEMP].rc.rocker_l1;
gimbal_cmd_send.yaw -= 0.0025f * (float) rc_data[TEMP].rc.rocker_l_;
gimbal_cmd_send.pitch -= 0.001f * (float) rc_data[TEMP].rc.rocker_l1;
if (gimbal_cmd_send.pitch >= PITCH_MAX_ANGLE) gimbal_cmd_send.pitch = PITCH_MAX_ANGLE;
if (gimbal_cmd_send.pitch <= PITCH_MIN_ANGLE) gimbal_cmd_send.pitch = PITCH_MIN_ANGLE;
}
// 云台软件限位
// 底盘参数,目前没有加入小陀螺(调试似乎暂时没有必要),系数需要调整
// 底盘参数,目前没有加入小陀螺(调试似乎暂时没有必要),系数需要调整,遥控器输入灵敏度
chassis_cmd_send.vx = 8.0f * (float) rc_data[TEMP].rc.rocker_r_; // _水平方向
chassis_cmd_send.vy = 8.0f * (float) rc_data[TEMP].rc.rocker_r1; // 1数值方向
// 发射参数
if (switch_is_up(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[上],弹舱打开
; // 弹舱舵机控制,待添加servo_motor模块,开启
else
; // 弹舱舵机控制,待添加servo_motor模块,关闭
else; // 弹舱舵机控制,待添加servo_motor模块,关闭
// 摩擦轮控制,拨轮向上打为负,向下为正
if (rc_data[TEMP].rc.dial < -100) // 向上超过100,打开摩擦轮
@ -165,8 +163,7 @@ static void RemoteControlSet()
* @brief
*
*/
static void MouseKeySet()
{
static void MouseKeySet() {
chassis_cmd_send.vx = rc_data[TEMP].key[KEY_PRESS].w * 300 - rc_data[TEMP].key[KEY_PRESS].s * 300; // 系数待测
chassis_cmd_send.vy = rc_data[TEMP].key[KEY_PRESS].s * 300 - rc_data[TEMP].key[KEY_PRESS].d * 300;
@ -252,8 +249,7 @@ static void MouseKeySet()
* @todo 线(),daemon实现
*
*/
static void EmergencyHandler()
{
static void EmergencyHandler() {
// 拨轮的向下拨超过一半进入急停模式.注意向打时下拨轮是正
if (rc_data[TEMP].rc.dial > 300 || robot_state == ROBOT_STOP) // 还需添加重要应用和模块离线的判断
{
@ -266,8 +262,7 @@ static void EmergencyHandler()
LOGERROR("[CMD] emergency stop!");
}
// 遥控器右侧开关为[上],恢复正常运行
if (switch_is_up(rc_data[TEMP].rc.switch_right))
{
if (switch_is_up(rc_data[TEMP].rc.switch_right)) {
robot_state = ROBOT_READY;
shoot_cmd_send.shoot_mode = SHOOT_ON;
LOGINFO("[CMD] reinstate, robot ready");
@ -275,8 +270,7 @@ static void EmergencyHandler()
}
/* 机器人核心控制任务,200Hz频率运行(必须高于视觉发送频率) */
void RobotCMDTask()
{
void RobotCMDTask() {
// 从其他应用获取回传数据
#ifdef ONE_BOARD
SubGetMessage(chassis_feed_sub, (void *) &chassis_fetch_data);

View File

@ -14,9 +14,10 @@ static Publisher_t *gimbal_pub; // 云台应用消息发布者
static Subscriber_t *gimbal_sub; // cmd控制消息订阅者
static Gimbal_Upload_Data_s gimbal_feedback_data; // 回传给cmd的云台状态信息
static Gimbal_Ctrl_Cmd_s gimbal_cmd_recv; // 来自cmd的控制信息
#include "vofa.h"
void GimbalInit()
{
void GimbalInit() {
gimba_IMU_data = INS_Init(); // IMU先初始化,获取姿态数据指针赋给yaw电机的其他数据来源
// YAW
Motor_Init_Config_s yaw_config = {
@ -26,7 +27,7 @@ void GimbalInit()
},
.controller_param_init_config = {
.angle_PID = {
.Kp = 8, // 8
.Kp = 0.5, // 8
.Ki = 0,
.Kd = 0,
.DeadBand = 0.1,
@ -36,8 +37,8 @@ void GimbalInit()
.MaxOut = 500,
},
.speed_PID = {
.Kp = 50, // 50
.Ki = 200, // 200
.Kp = 12000, // 50
.Ki = 3000, // 200
.Kd = 0,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.IntegralLimit = 3000,
@ -51,7 +52,7 @@ void GimbalInit()
.angle_feedback_source = OTHER_FEED,
.speed_feedback_source = OTHER_FEED,
.outer_loop_type = ANGLE_LOOP,
.close_loop_type = ANGLE_LOOP | SPEED_LOOP,
.close_loop_type = SPEED_LOOP | ANGLE_LOOP,
.motor_reverse_flag = MOTOR_DIRECTION_NORMAL,
},
.motor_type = GM6020};
@ -59,20 +60,20 @@ void GimbalInit()
Motor_Init_Config_s pitch_config = {
.can_init_config = {
.can_handle = &hcan2,
.tx_id = 2,
.tx_id = 4,
},
.controller_param_init_config = {
.angle_PID = {
.Kp = 10, // 10
.Kp = 7.5, // 10
.Ki = 0,
.Kd = 0,
.Kd = 0.05,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.IntegralLimit = 100,
.MaxOut = 500,
},
.speed_PID = {
.Kp = 50, // 50
.Ki = 350, // 350
.Kp = -300, // 50
.Ki = 0, // 350
.Kd = 0, // 0
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.IntegralLimit = 2500,
@ -80,7 +81,7 @@ void GimbalInit()
},
.other_angle_feedback_ptr = &gimba_IMU_data->Pitch,
// 还需要增加角速度额外反馈指针,注意方向,ins_task.md中有c板的bodyframe坐标系说明
.other_speed_feedback_ptr = (&gimba_IMU_data->Gyro[0]),
.other_speed_feedback_ptr = &gimba_IMU_data->Gyro[0],
},
.controller_setting_init_config = {
.angle_feedback_source = OTHER_FEED,
@ -100,16 +101,14 @@ void GimbalInit()
}
/* 机器人云台控制核心任务,后续考虑只保留IMU控制,不再需要电机的反馈 */
void GimbalTask()
{
void GimbalTask() {
// 获取云台控制数据
// 后续增加未收到数据的处理
SubGetMessage(gimbal_sub, &gimbal_cmd_recv);
// @todo:现在已不再需要电机反馈,实际上可以始终使用IMU的姿态数据来作为云台的反馈,yaw电机的offset只是用来跟随底盘
// 根据控制模式进行电机反馈切换和过渡,视觉模式在robot_cmd模块就已经设置好,gimbal只看yaw_ref和pitch_ref
switch (gimbal_cmd_recv.gimbal_mode)
{
switch (gimbal_cmd_recv.gimbal_mode) {
// 停止
case GIMBAL_ZERO_FORCE:
DJIMotorStop(yaw_motor);
@ -145,6 +144,19 @@ void GimbalTask()
// 根据IMU姿态/pitch电机角度反馈计算出当前配重下的重力矩
// ...
//float vofa_send_data[4];
// vofa_send_data[0] = pitch_motor->motor_controller.speed_PID.Ref;
// vofa_send_data[1] = pitch_motor->motor_controller.speed_PID.Measure;
// vofa_send_data[2] = pitch_motor->motor_controller.angle_PID.Ref;
// vofa_send_data[3] = pitch_motor->motor_controller.angle_PID.Measure;
//
// vofa_send_data[0] = yaw_motor->motor_controller.speed_PID.Ref;
// vofa_send_data[1] = yaw_motor->motor_controller.speed_PID.Measure;
// vofa_send_data[2] = yaw_motor->motor_controller.angle_PID.Ref;
// vofa_send_data[3] = yaw_motor->motor_controller.angle_PID.Measure;
// vofa_justfloat_output(vofa_send_data, 16, &huart1);
// 设置反馈数据,主要是imu和yaw的ecd
gimbal_feedback_data.gimbal_imu_data = *gimba_IMU_data;
gimbal_feedback_data.yaw_motor_single_round_angle = yaw_motor->measure.angle_single_round;

View File

@ -31,7 +31,7 @@ void RobotInit()
#if defined(ONE_BOARD) || defined(GIMBAL_BOARD)
RobotCMDInit();
// GimbalInit();
GimbalInit();
// ShootInit();
#endif
@ -49,7 +49,7 @@ void RobotTask()
{
#if defined(ONE_BOARD) || defined(GIMBAL_BOARD)
RobotCMDTask();
//GimbalTask();
GimbalTask();
//ShootTask();
#endif

View File

@ -26,11 +26,11 @@
/* 机器人重要参数定义,注意根据不同机器人进行修改,浮点数需要以.0或f结尾,无符号以u结尾 */
// 云台参数
#define YAW_CHASSIS_ALIGN_ECD 2711 // 云台和底盘对齐指向相同方向时的电机编码器值,若对云台有机械改动需要修改
#define YAW_CHASSIS_ALIGN_ECD 1995 // 云台和底盘对齐指向相同方向时的电机编码器值,若对云台有机械改动需要修改
#define YAW_ECD_GREATER_THAN_4096 0 // ALIGN_ECD值是否大于4096,是为1,否为0;用于计算云台偏转角度
#define PITCH_HORIZON_ECD 3412 // 云台处于水平位置时编码器值,若对云台有机械改动需要修改
#define PITCH_MAX_ANGLE 0 // 云台竖直方向最大角度 (注意反馈如果是陀螺仪,则填写陀螺仪的角度)
#define PITCH_MIN_ANGLE 0 // 云台竖直方向最小角度 (注意反馈如果是陀螺仪,则填写陀螺仪的角度)
#define PITCH_HORIZON_ECD 1670 // 云台处于水平位置时编码器值,若对云台有机械改动需要修改
#define PITCH_MAX_ANGLE 30 // 云台竖直方向最大角度 (注意反馈如果是陀螺仪,则填写陀螺仪的角度)
#define PITCH_MIN_ANGLE -18 // 云台竖直方向最小角度 (注意反馈如果是陀螺仪,则填写陀螺仪的角度)
// 发射参数
#define ONE_BULLET_DELTA_ANGLE 36 // 发射一发弹丸拨盘转动的距离,由机械设计图纸给出
#define REDUCTION_RATIO_LOADER 49.0f // 拨盘电机的减速比,英雄需要修改为3508的19.0f

View File

@ -27,5 +27,5 @@ uint8_t *USBInit(USB_Init_Config_s usb_conf)
void USBTransmit(uint8_t *buffer, uint16_t len)
{
CDC_Transmit_FS(buffer, len); // 发送
//CDC_Transmit_FS(buffer, len); // 发送
}

View File

@ -30,6 +30,6 @@ void vofa_justfloat_output(float *data, uint8_t num , UART_HandleTypeDef *huart
send_data[4 * num + 2] = 0x80;
send_data[4 * num + 3] = 0x7f; //加上协议要求的4个尾巴
HAL_UART_Transmit(huart, (uint8_t *)send_data, 4 * num + 4, 100);
//CDC_Transmit_FS((uint8_t *)send_data,4 * num + 4);
//HAL_UART_Transmit(huart, (uint8_t *)send_data, 4 * num + 4, 100);
CDC_Transmit_FS((uint8_t *)send_data,4 * num + 4);
}