yaw,pitch基本完成
This commit is contained in:
parent
07331f23e3
commit
18988c5770
|
@ -63,9 +63,9 @@ void ChassisInit() {
|
||||||
.can_init_config.can_handle = &hcan1,
|
.can_init_config.can_handle = &hcan1,
|
||||||
.controller_param_init_config = {
|
.controller_param_init_config = {
|
||||||
.speed_PID = {
|
.speed_PID = {
|
||||||
.Kp = 1.0, // 4.5
|
.Kp = 4.0f, // 4.5
|
||||||
.Ki = 0, // 1.5
|
.Ki = 8.0f, // 1.5
|
||||||
.Kd = 0, // 0
|
.Kd = 0.0015, // 0
|
||||||
.IntegralLimit = 3000,
|
.IntegralLimit = 3000,
|
||||||
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
||||||
.MaxOut = 12000,
|
.MaxOut = 12000,
|
||||||
|
@ -221,7 +221,7 @@ void ChassisTask() {
|
||||||
chassis_cmd_recv.wz = 0;
|
chassis_cmd_recv.wz = 0;
|
||||||
break;
|
break;
|
||||||
case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出
|
case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出
|
||||||
chassis_cmd_recv.wz = -1.5f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle);
|
chassis_cmd_recv.wz = 10.0f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle);
|
||||||
break;
|
break;
|
||||||
case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
|
case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
|
||||||
chassis_cmd_recv.wz = 4000;
|
chassis_cmd_recv.wz = 4000;
|
||||||
|
@ -233,10 +233,10 @@ void ChassisTask() {
|
||||||
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
|
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
|
||||||
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
|
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
|
||||||
static float sin_theta, cos_theta;
|
static float sin_theta, cos_theta;
|
||||||
// cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
|
cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
|
||||||
// sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
|
sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
|
||||||
sin_theta = 0;
|
// sin_theta = 0;
|
||||||
cos_theta = 1;
|
// cos_theta = 1;
|
||||||
chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta;
|
chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta;
|
||||||
chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta;
|
chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta;
|
||||||
|
|
||||||
|
|
|
@ -47,8 +47,7 @@ static Shoot_Upload_Data_s shoot_fetch_data; // 从发射获取的反馈信息
|
||||||
|
|
||||||
static Robot_Status_e robot_state; // 机器人整体工作状态
|
static Robot_Status_e robot_state; // 机器人整体工作状态
|
||||||
|
|
||||||
void RobotCMDInit()
|
void RobotCMDInit() {
|
||||||
{
|
|
||||||
rc_data = RemoteControlInit(&huart3); // 修改为对应串口,注意如果是自研板dbus协议串口需选用添加了反相器的那个
|
rc_data = RemoteControlInit(&huart3); // 修改为对应串口,注意如果是自研板dbus协议串口需选用添加了反相器的那个
|
||||||
vision_recv_data = VisionInit(&huart1); // 视觉通信串口
|
vision_recv_data = VisionInit(&huart1); // 视觉通信串口
|
||||||
|
|
||||||
|
@ -83,8 +82,7 @@ void RobotCMDInit()
|
||||||
* 单圈绝对角度的范围是0~360,说明文档中有图示
|
* 单圈绝对角度的范围是0~360,说明文档中有图示
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
static void CalcOffsetAngle()
|
static void CalcOffsetAngle() {
|
||||||
{
|
|
||||||
// 别名angle提高可读性,不然太长了不好看,虽然基本不会动这个函数
|
// 别名angle提高可读性,不然太长了不好看,虽然基本不会动这个函数
|
||||||
static float angle;
|
static float angle;
|
||||||
angle = gimbal_fetch_data.yaw_motor_single_round_angle; // 从云台获取的当前yaw电机单圈角度
|
angle = gimbal_fetch_data.yaw_motor_single_round_angle; // 从云台获取的当前yaw电机单圈角度
|
||||||
|
@ -109,15 +107,13 @@ static void CalcOffsetAngle()
|
||||||
* @brief 控制输入为遥控器(调试时)的模式和控制量设置
|
* @brief 控制输入为遥控器(调试时)的模式和控制量设置
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
static void RemoteControlSet()
|
static void RemoteControlSet() {
|
||||||
{
|
|
||||||
// 控制底盘和云台运行模式,云台待添加,云台是否始终使用IMU数据?
|
// 控制底盘和云台运行模式,云台待添加,云台是否始终使用IMU数据?
|
||||||
if (switch_is_down(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[下],底盘跟随云台
|
if (switch_is_down(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[下],底盘跟随云台
|
||||||
{
|
{
|
||||||
chassis_cmd_send.chassis_mode = CHASSIS_ROTATE;
|
chassis_cmd_send.chassis_mode = CHASSIS_FOLLOW_GIMBAL_YAW;
|
||||||
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
|
gimbal_cmd_send.gimbal_mode = GIMBAL_GYRO_MODE;
|
||||||
}
|
} else if (switch_is_mid(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[中],底盘和云台分离,底盘保持不转动
|
||||||
else if (switch_is_mid(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[中],底盘和云台分离,底盘保持不转动
|
|
||||||
{
|
{
|
||||||
chassis_cmd_send.chassis_mode = CHASSIS_NO_FOLLOW;
|
chassis_cmd_send.chassis_mode = CHASSIS_NO_FOLLOW;
|
||||||
gimbal_cmd_send.gimbal_mode = GIMBAL_FREE_MODE;
|
gimbal_cmd_send.gimbal_mode = GIMBAL_FREE_MODE;
|
||||||
|
@ -132,20 +128,22 @@ static void RemoteControlSet()
|
||||||
// 左侧开关状态为[下],或视觉未识别到目标,纯遥控器拨杆控制
|
// 左侧开关状态为[下],或视觉未识别到目标,纯遥控器拨杆控制
|
||||||
if (switch_is_down(rc_data[TEMP].rc.switch_left))//|| vision_recv_data->target_state == NO_TARGET
|
if (switch_is_down(rc_data[TEMP].rc.switch_left))//|| vision_recv_data->target_state == NO_TARGET
|
||||||
{ // 按照摇杆的输出大小进行角度增量,增益系数需调整
|
{ // 按照摇杆的输出大小进行角度增量,增益系数需调整
|
||||||
gimbal_cmd_send.yaw += 0.005f * (float)rc_data[TEMP].rc.rocker_l_;
|
gimbal_cmd_send.yaw -= 0.0025f * (float) rc_data[TEMP].rc.rocker_l_;
|
||||||
gimbal_cmd_send.pitch += 0.001f * (float)rc_data[TEMP].rc.rocker_l1;
|
gimbal_cmd_send.pitch -= 0.001f * (float) rc_data[TEMP].rc.rocker_l1;
|
||||||
|
|
||||||
|
if (gimbal_cmd_send.pitch >= PITCH_MAX_ANGLE) gimbal_cmd_send.pitch = PITCH_MAX_ANGLE;
|
||||||
|
if (gimbal_cmd_send.pitch <= PITCH_MIN_ANGLE) gimbal_cmd_send.pitch = PITCH_MIN_ANGLE;
|
||||||
}
|
}
|
||||||
// 云台软件限位
|
// 云台软件限位
|
||||||
|
|
||||||
// 底盘参数,目前没有加入小陀螺(调试似乎暂时没有必要),系数需要调整
|
// 底盘参数,目前没有加入小陀螺(调试似乎暂时没有必要),系数需要调整,遥控器输入灵敏度
|
||||||
chassis_cmd_send.vx = 8.0f * (float) rc_data[TEMP].rc.rocker_r_; // _水平方向
|
chassis_cmd_send.vx = 8.0f * (float) rc_data[TEMP].rc.rocker_r_; // _水平方向
|
||||||
chassis_cmd_send.vy = 8.0f * (float) rc_data[TEMP].rc.rocker_r1; // 1数值方向
|
chassis_cmd_send.vy = 8.0f * (float) rc_data[TEMP].rc.rocker_r1; // 1数值方向
|
||||||
|
|
||||||
// 发射参数
|
// 发射参数
|
||||||
if (switch_is_up(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[上],弹舱打开
|
if (switch_is_up(rc_data[TEMP].rc.switch_right)) // 右侧开关状态[上],弹舱打开
|
||||||
; // 弹舱舵机控制,待添加servo_motor模块,开启
|
; // 弹舱舵机控制,待添加servo_motor模块,开启
|
||||||
else
|
else; // 弹舱舵机控制,待添加servo_motor模块,关闭
|
||||||
; // 弹舱舵机控制,待添加servo_motor模块,关闭
|
|
||||||
|
|
||||||
// 摩擦轮控制,拨轮向上打为负,向下为正
|
// 摩擦轮控制,拨轮向上打为负,向下为正
|
||||||
if (rc_data[TEMP].rc.dial < -100) // 向上超过100,打开摩擦轮
|
if (rc_data[TEMP].rc.dial < -100) // 向上超过100,打开摩擦轮
|
||||||
|
@ -165,8 +163,7 @@ static void RemoteControlSet()
|
||||||
* @brief 输入为键鼠时模式和控制量设置
|
* @brief 输入为键鼠时模式和控制量设置
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
static void MouseKeySet()
|
static void MouseKeySet() {
|
||||||
{
|
|
||||||
chassis_cmd_send.vx = rc_data[TEMP].key[KEY_PRESS].w * 300 - rc_data[TEMP].key[KEY_PRESS].s * 300; // 系数待测
|
chassis_cmd_send.vx = rc_data[TEMP].key[KEY_PRESS].w * 300 - rc_data[TEMP].key[KEY_PRESS].s * 300; // 系数待测
|
||||||
chassis_cmd_send.vy = rc_data[TEMP].key[KEY_PRESS].s * 300 - rc_data[TEMP].key[KEY_PRESS].d * 300;
|
chassis_cmd_send.vy = rc_data[TEMP].key[KEY_PRESS].s * 300 - rc_data[TEMP].key[KEY_PRESS].d * 300;
|
||||||
|
|
||||||
|
@ -252,8 +249,7 @@ static void MouseKeySet()
|
||||||
* @todo 后续修改为遥控器离线则电机停止(关闭遥控器急停),通过给遥控器模块添加daemon实现
|
* @todo 后续修改为遥控器离线则电机停止(关闭遥控器急停),通过给遥控器模块添加daemon实现
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
static void EmergencyHandler()
|
static void EmergencyHandler() {
|
||||||
{
|
|
||||||
// 拨轮的向下拨超过一半进入急停模式.注意向打时下拨轮是正
|
// 拨轮的向下拨超过一半进入急停模式.注意向打时下拨轮是正
|
||||||
if (rc_data[TEMP].rc.dial > 300 || robot_state == ROBOT_STOP) // 还需添加重要应用和模块离线的判断
|
if (rc_data[TEMP].rc.dial > 300 || robot_state == ROBOT_STOP) // 还需添加重要应用和模块离线的判断
|
||||||
{
|
{
|
||||||
|
@ -266,8 +262,7 @@ static void EmergencyHandler()
|
||||||
LOGERROR("[CMD] emergency stop!");
|
LOGERROR("[CMD] emergency stop!");
|
||||||
}
|
}
|
||||||
// 遥控器右侧开关为[上],恢复正常运行
|
// 遥控器右侧开关为[上],恢复正常运行
|
||||||
if (switch_is_up(rc_data[TEMP].rc.switch_right))
|
if (switch_is_up(rc_data[TEMP].rc.switch_right)) {
|
||||||
{
|
|
||||||
robot_state = ROBOT_READY;
|
robot_state = ROBOT_READY;
|
||||||
shoot_cmd_send.shoot_mode = SHOOT_ON;
|
shoot_cmd_send.shoot_mode = SHOOT_ON;
|
||||||
LOGINFO("[CMD] reinstate, robot ready");
|
LOGINFO("[CMD] reinstate, robot ready");
|
||||||
|
@ -275,8 +270,7 @@ static void EmergencyHandler()
|
||||||
}
|
}
|
||||||
|
|
||||||
/* 机器人核心控制任务,200Hz频率运行(必须高于视觉发送频率) */
|
/* 机器人核心控制任务,200Hz频率运行(必须高于视觉发送频率) */
|
||||||
void RobotCMDTask()
|
void RobotCMDTask() {
|
||||||
{
|
|
||||||
// 从其他应用获取回传数据
|
// 从其他应用获取回传数据
|
||||||
#ifdef ONE_BOARD
|
#ifdef ONE_BOARD
|
||||||
SubGetMessage(chassis_feed_sub, (void *) &chassis_fetch_data);
|
SubGetMessage(chassis_feed_sub, (void *) &chassis_fetch_data);
|
||||||
|
|
|
@ -14,9 +14,10 @@ static Publisher_t *gimbal_pub; // 云台应用消息发布者
|
||||||
static Subscriber_t *gimbal_sub; // cmd控制消息订阅者
|
static Subscriber_t *gimbal_sub; // cmd控制消息订阅者
|
||||||
static Gimbal_Upload_Data_s gimbal_feedback_data; // 回传给cmd的云台状态信息
|
static Gimbal_Upload_Data_s gimbal_feedback_data; // 回传给cmd的云台状态信息
|
||||||
static Gimbal_Ctrl_Cmd_s gimbal_cmd_recv; // 来自cmd的控制信息
|
static Gimbal_Ctrl_Cmd_s gimbal_cmd_recv; // 来自cmd的控制信息
|
||||||
|
#include "vofa.h"
|
||||||
|
|
||||||
void GimbalInit()
|
|
||||||
{
|
void GimbalInit() {
|
||||||
gimba_IMU_data = INS_Init(); // IMU先初始化,获取姿态数据指针赋给yaw电机的其他数据来源
|
gimba_IMU_data = INS_Init(); // IMU先初始化,获取姿态数据指针赋给yaw电机的其他数据来源
|
||||||
// YAW
|
// YAW
|
||||||
Motor_Init_Config_s yaw_config = {
|
Motor_Init_Config_s yaw_config = {
|
||||||
|
@ -26,7 +27,7 @@ void GimbalInit()
|
||||||
},
|
},
|
||||||
.controller_param_init_config = {
|
.controller_param_init_config = {
|
||||||
.angle_PID = {
|
.angle_PID = {
|
||||||
.Kp = 8, // 8
|
.Kp = 0.5, // 8
|
||||||
.Ki = 0,
|
.Ki = 0,
|
||||||
.Kd = 0,
|
.Kd = 0,
|
||||||
.DeadBand = 0.1,
|
.DeadBand = 0.1,
|
||||||
|
@ -36,8 +37,8 @@ void GimbalInit()
|
||||||
.MaxOut = 500,
|
.MaxOut = 500,
|
||||||
},
|
},
|
||||||
.speed_PID = {
|
.speed_PID = {
|
||||||
.Kp = 50, // 50
|
.Kp = 12000, // 50
|
||||||
.Ki = 200, // 200
|
.Ki = 3000, // 200
|
||||||
.Kd = 0,
|
.Kd = 0,
|
||||||
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
||||||
.IntegralLimit = 3000,
|
.IntegralLimit = 3000,
|
||||||
|
@ -51,7 +52,7 @@ void GimbalInit()
|
||||||
.angle_feedback_source = OTHER_FEED,
|
.angle_feedback_source = OTHER_FEED,
|
||||||
.speed_feedback_source = OTHER_FEED,
|
.speed_feedback_source = OTHER_FEED,
|
||||||
.outer_loop_type = ANGLE_LOOP,
|
.outer_loop_type = ANGLE_LOOP,
|
||||||
.close_loop_type = ANGLE_LOOP | SPEED_LOOP,
|
.close_loop_type = SPEED_LOOP | ANGLE_LOOP,
|
||||||
.motor_reverse_flag = MOTOR_DIRECTION_NORMAL,
|
.motor_reverse_flag = MOTOR_DIRECTION_NORMAL,
|
||||||
},
|
},
|
||||||
.motor_type = GM6020};
|
.motor_type = GM6020};
|
||||||
|
@ -59,20 +60,20 @@ void GimbalInit()
|
||||||
Motor_Init_Config_s pitch_config = {
|
Motor_Init_Config_s pitch_config = {
|
||||||
.can_init_config = {
|
.can_init_config = {
|
||||||
.can_handle = &hcan2,
|
.can_handle = &hcan2,
|
||||||
.tx_id = 2,
|
.tx_id = 4,
|
||||||
},
|
},
|
||||||
.controller_param_init_config = {
|
.controller_param_init_config = {
|
||||||
.angle_PID = {
|
.angle_PID = {
|
||||||
.Kp = 10, // 10
|
.Kp = 7.5, // 10
|
||||||
.Ki = 0,
|
.Ki = 0,
|
||||||
.Kd = 0,
|
.Kd = 0.05,
|
||||||
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
||||||
.IntegralLimit = 100,
|
.IntegralLimit = 100,
|
||||||
.MaxOut = 500,
|
.MaxOut = 500,
|
||||||
},
|
},
|
||||||
.speed_PID = {
|
.speed_PID = {
|
||||||
.Kp = 50, // 50
|
.Kp = -300, // 50
|
||||||
.Ki = 350, // 350
|
.Ki = 0, // 350
|
||||||
.Kd = 0, // 0
|
.Kd = 0, // 0
|
||||||
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
|
||||||
.IntegralLimit = 2500,
|
.IntegralLimit = 2500,
|
||||||
|
@ -80,7 +81,7 @@ void GimbalInit()
|
||||||
},
|
},
|
||||||
.other_angle_feedback_ptr = &gimba_IMU_data->Pitch,
|
.other_angle_feedback_ptr = &gimba_IMU_data->Pitch,
|
||||||
// 还需要增加角速度额外反馈指针,注意方向,ins_task.md中有c板的bodyframe坐标系说明
|
// 还需要增加角速度额外反馈指针,注意方向,ins_task.md中有c板的bodyframe坐标系说明
|
||||||
.other_speed_feedback_ptr = (&gimba_IMU_data->Gyro[0]),
|
.other_speed_feedback_ptr = &gimba_IMU_data->Gyro[0],
|
||||||
},
|
},
|
||||||
.controller_setting_init_config = {
|
.controller_setting_init_config = {
|
||||||
.angle_feedback_source = OTHER_FEED,
|
.angle_feedback_source = OTHER_FEED,
|
||||||
|
@ -100,16 +101,14 @@ void GimbalInit()
|
||||||
}
|
}
|
||||||
|
|
||||||
/* 机器人云台控制核心任务,后续考虑只保留IMU控制,不再需要电机的反馈 */
|
/* 机器人云台控制核心任务,后续考虑只保留IMU控制,不再需要电机的反馈 */
|
||||||
void GimbalTask()
|
void GimbalTask() {
|
||||||
{
|
|
||||||
// 获取云台控制数据
|
// 获取云台控制数据
|
||||||
// 后续增加未收到数据的处理
|
// 后续增加未收到数据的处理
|
||||||
SubGetMessage(gimbal_sub, &gimbal_cmd_recv);
|
SubGetMessage(gimbal_sub, &gimbal_cmd_recv);
|
||||||
|
|
||||||
// @todo:现在已不再需要电机反馈,实际上可以始终使用IMU的姿态数据来作为云台的反馈,yaw电机的offset只是用来跟随底盘
|
// @todo:现在已不再需要电机反馈,实际上可以始终使用IMU的姿态数据来作为云台的反馈,yaw电机的offset只是用来跟随底盘
|
||||||
// 根据控制模式进行电机反馈切换和过渡,视觉模式在robot_cmd模块就已经设置好,gimbal只看yaw_ref和pitch_ref
|
// 根据控制模式进行电机反馈切换和过渡,视觉模式在robot_cmd模块就已经设置好,gimbal只看yaw_ref和pitch_ref
|
||||||
switch (gimbal_cmd_recv.gimbal_mode)
|
switch (gimbal_cmd_recv.gimbal_mode) {
|
||||||
{
|
|
||||||
// 停止
|
// 停止
|
||||||
case GIMBAL_ZERO_FORCE:
|
case GIMBAL_ZERO_FORCE:
|
||||||
DJIMotorStop(yaw_motor);
|
DJIMotorStop(yaw_motor);
|
||||||
|
@ -145,6 +144,19 @@ void GimbalTask()
|
||||||
// 根据IMU姿态/pitch电机角度反馈计算出当前配重下的重力矩
|
// 根据IMU姿态/pitch电机角度反馈计算出当前配重下的重力矩
|
||||||
// ...
|
// ...
|
||||||
|
|
||||||
|
//float vofa_send_data[4];
|
||||||
|
// vofa_send_data[0] = pitch_motor->motor_controller.speed_PID.Ref;
|
||||||
|
// vofa_send_data[1] = pitch_motor->motor_controller.speed_PID.Measure;
|
||||||
|
// vofa_send_data[2] = pitch_motor->motor_controller.angle_PID.Ref;
|
||||||
|
// vofa_send_data[3] = pitch_motor->motor_controller.angle_PID.Measure;
|
||||||
|
//
|
||||||
|
// vofa_send_data[0] = yaw_motor->motor_controller.speed_PID.Ref;
|
||||||
|
// vofa_send_data[1] = yaw_motor->motor_controller.speed_PID.Measure;
|
||||||
|
// vofa_send_data[2] = yaw_motor->motor_controller.angle_PID.Ref;
|
||||||
|
// vofa_send_data[3] = yaw_motor->motor_controller.angle_PID.Measure;
|
||||||
|
// vofa_justfloat_output(vofa_send_data, 16, &huart1);
|
||||||
|
|
||||||
|
|
||||||
// 设置反馈数据,主要是imu和yaw的ecd
|
// 设置反馈数据,主要是imu和yaw的ecd
|
||||||
gimbal_feedback_data.gimbal_imu_data = *gimba_IMU_data;
|
gimbal_feedback_data.gimbal_imu_data = *gimba_IMU_data;
|
||||||
gimbal_feedback_data.yaw_motor_single_round_angle = yaw_motor->measure.angle_single_round;
|
gimbal_feedback_data.yaw_motor_single_round_angle = yaw_motor->measure.angle_single_round;
|
||||||
|
|
|
@ -31,7 +31,7 @@ void RobotInit()
|
||||||
|
|
||||||
#if defined(ONE_BOARD) || defined(GIMBAL_BOARD)
|
#if defined(ONE_BOARD) || defined(GIMBAL_BOARD)
|
||||||
RobotCMDInit();
|
RobotCMDInit();
|
||||||
// GimbalInit();
|
GimbalInit();
|
||||||
// ShootInit();
|
// ShootInit();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -49,7 +49,7 @@ void RobotTask()
|
||||||
{
|
{
|
||||||
#if defined(ONE_BOARD) || defined(GIMBAL_BOARD)
|
#if defined(ONE_BOARD) || defined(GIMBAL_BOARD)
|
||||||
RobotCMDTask();
|
RobotCMDTask();
|
||||||
//GimbalTask();
|
GimbalTask();
|
||||||
//ShootTask();
|
//ShootTask();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
|
@ -26,11 +26,11 @@
|
||||||
|
|
||||||
/* 机器人重要参数定义,注意根据不同机器人进行修改,浮点数需要以.0或f结尾,无符号以u结尾 */
|
/* 机器人重要参数定义,注意根据不同机器人进行修改,浮点数需要以.0或f结尾,无符号以u结尾 */
|
||||||
// 云台参数
|
// 云台参数
|
||||||
#define YAW_CHASSIS_ALIGN_ECD 2711 // 云台和底盘对齐指向相同方向时的电机编码器值,若对云台有机械改动需要修改
|
#define YAW_CHASSIS_ALIGN_ECD 1995 // 云台和底盘对齐指向相同方向时的电机编码器值,若对云台有机械改动需要修改
|
||||||
#define YAW_ECD_GREATER_THAN_4096 0 // ALIGN_ECD值是否大于4096,是为1,否为0;用于计算云台偏转角度
|
#define YAW_ECD_GREATER_THAN_4096 0 // ALIGN_ECD值是否大于4096,是为1,否为0;用于计算云台偏转角度
|
||||||
#define PITCH_HORIZON_ECD 3412 // 云台处于水平位置时编码器值,若对云台有机械改动需要修改
|
#define PITCH_HORIZON_ECD 1670 // 云台处于水平位置时编码器值,若对云台有机械改动需要修改
|
||||||
#define PITCH_MAX_ANGLE 0 // 云台竖直方向最大角度 (注意反馈如果是陀螺仪,则填写陀螺仪的角度)
|
#define PITCH_MAX_ANGLE 30 // 云台竖直方向最大角度 (注意反馈如果是陀螺仪,则填写陀螺仪的角度)
|
||||||
#define PITCH_MIN_ANGLE 0 // 云台竖直方向最小角度 (注意反馈如果是陀螺仪,则填写陀螺仪的角度)
|
#define PITCH_MIN_ANGLE -18 // 云台竖直方向最小角度 (注意反馈如果是陀螺仪,则填写陀螺仪的角度)
|
||||||
// 发射参数
|
// 发射参数
|
||||||
#define ONE_BULLET_DELTA_ANGLE 36 // 发射一发弹丸拨盘转动的距离,由机械设计图纸给出
|
#define ONE_BULLET_DELTA_ANGLE 36 // 发射一发弹丸拨盘转动的距离,由机械设计图纸给出
|
||||||
#define REDUCTION_RATIO_LOADER 49.0f // 拨盘电机的减速比,英雄需要修改为3508的19.0f
|
#define REDUCTION_RATIO_LOADER 49.0f // 拨盘电机的减速比,英雄需要修改为3508的19.0f
|
||||||
|
|
|
@ -27,5 +27,5 @@ uint8_t *USBInit(USB_Init_Config_s usb_conf)
|
||||||
|
|
||||||
void USBTransmit(uint8_t *buffer, uint16_t len)
|
void USBTransmit(uint8_t *buffer, uint16_t len)
|
||||||
{
|
{
|
||||||
CDC_Transmit_FS(buffer, len); // 发送
|
//CDC_Transmit_FS(buffer, len); // 发送
|
||||||
}
|
}
|
||||||
|
|
|
@ -30,6 +30,6 @@ void vofa_justfloat_output(float *data, uint8_t num , UART_HandleTypeDef *huart
|
||||||
send_data[4 * num + 2] = 0x80;
|
send_data[4 * num + 2] = 0x80;
|
||||||
send_data[4 * num + 3] = 0x7f; //加上协议要求的4个尾巴
|
send_data[4 * num + 3] = 0x7f; //加上协议要求的4个尾巴
|
||||||
|
|
||||||
HAL_UART_Transmit(huart, (uint8_t *)send_data, 4 * num + 4, 100);
|
//HAL_UART_Transmit(huart, (uint8_t *)send_data, 4 * num + 4, 100);
|
||||||
//CDC_Transmit_FS((uint8_t *)send_data,4 * num + 4);
|
CDC_Transmit_FS((uint8_t *)send_data,4 * num + 4);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue