basic_framework/application/chassis/chassis.c

294 lines
12 KiB
C
Raw Normal View History

2023-10-02 18:00:54 +08:00
/**
* @file chassis.c
* @author NeoZeng neozng1@hnu.edu.cn
* @brief ,robot_cmd的控制命令并根据命令进行运动学解算,
* ,,x正方向;y正方向
*
* @version 0.1
* @date 2022-12-04
*
* @copyright Copyright (c) 2022
*
*/
#include "chassis.h"
#include "robot_def.h"
#include "dji_motor.h"
#include "super_cap.h"
#include "message_center.h"
#include "referee_task.h"
#include "general_def.h"
#include "bsp_dwt.h"
#include "referee_UI.h"
#include "arm_math.h"
2024-02-29 20:39:18 +08:00
#include "power_meter/power_meter.h"
2023-10-02 18:00:54 +08:00
/* 根据robot_def.h中的macro自动计算的参数 */
#define HALF_WHEEL_BASE (WHEEL_BASE / 2.0f) // 半轴距
#define HALF_TRACK_WIDTH (TRACK_WIDTH / 2.0f) // 半轮距
#define PERIMETER_WHEEL (RADIUS_WHEEL * 2 * PI) // 轮子周长
/* 底盘应用包含的模块和信息存储,底盘是单例模式,因此不需要为底盘建立单独的结构体 */
#ifdef CHASSIS_BOARD // 如果是底盘板,使用板载IMU获取底盘转动角速度
#include "can_comm.h"
#include "ins_task.h"
static CANCommInstance *chasiss_can_comm; // 双板通信CAN comm
attitude_t *Chassis_IMU_data;
#endif // CHASSIS_BOARD
#ifdef ONE_BOARD
static Publisher_t *chassis_pub; // 用于发布底盘的数据
static Subscriber_t *chassis_sub; // 用于订阅底盘的控制命令
#endif // !ONE_BOARD
static Chassis_Ctrl_Cmd_s chassis_cmd_recv; // 底盘接收到的控制命令
static Chassis_Upload_Data_s chassis_feedback_data; // 底盘回传的反馈数据
static referee_info_t* referee_data; // 用于获取裁判系统的数据
static Referee_Interactive_info_t ui_data; // UI数据将底盘中的数据传入此结构体的对应变量中UI会自动检测是否变化对应显示UI
static SuperCapInstance *cap; // 超级电容
2024-02-29 20:39:18 +08:00
static PowerMeterInstance *power_meter; //功率计
2023-10-02 18:00:54 +08:00
static DJIMotorInstance *motor_lf, *motor_rf, *motor_lb, *motor_rb; // left right forward back
2024-02-29 20:39:18 +08:00
float chassis_power = 0;
2023-10-02 18:00:54 +08:00
/* 用于自旋变速策略的时间变量 */
// static float t;
/* 私有函数计算的中介变量,设为静态避免参数传递的开销 */
static float chassis_vx, chassis_vy; // 将云台系的速度投影到底盘
static float vt_lf, vt_rf, vt_lb, vt_rb; // 底盘速度解算后的临时输出,待进行限幅
2024-02-29 20:39:18 +08:00
float P_cmdall = 0;
2023-10-02 18:00:54 +08:00
void ChassisInit()
{
// 四个轮子的参数一样,改tx_id和反转标志位即可
Motor_Init_Config_s chassis_motor_config = {
.can_init_config.can_handle = &hcan1,
.controller_param_init_config = {
.speed_PID = {
2024-02-01 21:43:57 +08:00
.Kp = 17, // 4.5
.Ki = 3, // 0
.Kd = 0.02f, // 0
2023-10-02 18:00:54 +08:00
.IntegralLimit = 3000,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.MaxOut = 12000,
},
.current_PID = {
2024-02-01 21:43:57 +08:00
.Kp = 0.4f, // 0.4
.Ki = 0.1f, // 0
2023-10-02 18:00:54 +08:00
.Kd = 0,
.IntegralLimit = 3000,
.Improve = PID_Trapezoid_Intergral | PID_Integral_Limit | PID_Derivative_On_Measurement,
.MaxOut = 15000,
},
},
.controller_setting_init_config = {
.angle_feedback_source = MOTOR_FEED,
.speed_feedback_source = MOTOR_FEED,
.outer_loop_type = SPEED_LOOP,
.close_loop_type = SPEED_LOOP | CURRENT_LOOP,
2024-02-29 20:39:18 +08:00
.power_limit_flag = NO_POWER_LIMIT,
2023-10-02 18:00:54 +08:00
},
.motor_type = M3508,
};
// @todo: 当前还没有设置电机的正反转,仍然需要手动添加reference的正负号,需要电机module的支持,待修改.
chassis_motor_config.can_init_config.tx_id = 2;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
2023-10-02 18:00:54 +08:00
motor_lf = DJIMotorInit(&chassis_motor_config);
chassis_motor_config.can_init_config.tx_id = 1;
2023-10-02 18:00:54 +08:00
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE;
motor_rf = DJIMotorInit(&chassis_motor_config);
chassis_motor_config.can_init_config.tx_id = 4;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_REVERSE;
motor_lb = DJIMotorInit(&chassis_motor_config);
chassis_motor_config.can_init_config.tx_id = 3;
chassis_motor_config.controller_setting_init_config.motor_reverse_flag = MOTOR_DIRECTION_NORMAL;
2023-10-02 18:00:54 +08:00
motor_rb = DJIMotorInit(&chassis_motor_config);
referee_data = UITaskInit(&huart6,&ui_data); // 裁判系统初始化,会同时初始化UI
SuperCap_Init_Config_s cap_conf = {
.can_config = {
.can_handle = &hcan2,
.tx_id = 0x302, // 超级电容默认接收id
.rx_id = 0x301, // 超级电容默认发送id,注意tx和rx在其他人看来是反的
}};
cap = SuperCapInit(&cap_conf); // 超级电容初始化
2024-02-29 20:39:18 +08:00
PowerMeter_Init_Config_s power_conf = {
.can_config = {
.can_handle = &hcan2,
.rx_id = 0x211,
}
};
power_meter = PowerMeterInit(&power_conf);
2023-10-02 18:00:54 +08:00
// 发布订阅初始化,如果为双板,则需要can comm来传递消息
#ifdef CHASSIS_BOARD
Chassis_IMU_data = INS_Init(); // 底盘IMU初始化
CANComm_Init_Config_s comm_conf = {
.can_config = {
.can_handle = &hcan2,
.tx_id = 0x311,
.rx_id = 0x312,
},
.recv_data_len = sizeof(Chassis_Ctrl_Cmd_s),
.send_data_len = sizeof(Chassis_Upload_Data_s),
};
chasiss_can_comm = CANCommInit(&comm_conf); // can comm初始化
#endif // CHASSIS_BOARD
#ifdef ONE_BOARD // 单板控制整车,则通过pubsub来传递消息
chassis_sub = SubRegister("chassis_cmd", sizeof(Chassis_Ctrl_Cmd_s));
chassis_pub = PubRegister("chassis_feed", sizeof(Chassis_Upload_Data_s));
#endif // ONE_BOARD
}
//225+0+215-0
2023-10-02 18:00:54 +08:00
#define LF_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define RF_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE - CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define LB_CENTER ((HALF_TRACK_WIDTH + CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
#define RB_CENTER ((HALF_TRACK_WIDTH - CENTER_GIMBAL_OFFSET_X + HALF_WHEEL_BASE + CENTER_GIMBAL_OFFSET_Y) * DEGREE_2_RAD)
/**
* @brief ,
* ,
*/
static void MecanumCalculate()
{
vt_lf = chassis_vx + chassis_vy - chassis_cmd_recv.wz * (LF_CENTER-1);
vt_rf = -chassis_vx + chassis_vy + chassis_cmd_recv.wz * (RF_CENTER-1);
vt_lb = chassis_vx - chassis_vy - chassis_cmd_recv.wz * (-LB_CENTER-1);
vt_rb = -chassis_vx - chassis_vy + chassis_cmd_recv.wz * (-RB_CENTER-1);
2023-10-02 18:00:54 +08:00
}
2024-02-29 20:39:18 +08:00
2023-10-02 18:00:54 +08:00
/**
* @brief
*
*/
static void LimitChassisOutput()
{
2024-02-29 20:39:18 +08:00
float initial_total_power[4]={motor_rf->motor_controller.motor_power_predict ,
motor_rb->motor_controller.motor_power_predict ,
motor_lb->motor_controller.motor_power_predict ,
motor_lf->motor_controller.motor_power_predict};
P_cmdall = 0;
for(uint8_t i=0;i<4;i++)
{
if(initial_total_power[i]<0)
continue;
P_cmdall += initial_total_power[i];
}
float P_max = 50-10 ;
float K = P_max/P_cmdall;
motor_rf->motor_controller.motor_power_scale = K;
motor_rb->motor_controller.motor_power_scale = K;
motor_lf->motor_controller.motor_power_scale = K;
motor_lb->motor_controller.motor_power_scale = K;
{
DJIMotorSetRef(motor_lf, vt_lf);
DJIMotorSetRef(motor_rf, vt_rf);
DJIMotorSetRef(motor_lb, vt_lb);
DJIMotorSetRef(motor_rb, vt_rb);
}
2023-10-02 18:00:54 +08:00
}
/**
* @brief ,,
* ,IMU的数据
*
*/
static void EstimateSpeed()
{
// 根据电机速度和陀螺仪的角速度进行解算,还可以利用加速度计判断是否打滑(如果有)
// chassis_feedback_data.vx vy wz =
// ...
}
/* 机器人底盘控制核心任务 */
void ChassisTask()
{
// 后续增加没收到消息的处理(双板的情况)
// 获取新的控制信息
#ifdef ONE_BOARD
SubGetMessage(chassis_sub, &chassis_cmd_recv);
#endif
#ifdef CHASSIS_BOARD
chassis_cmd_recv = *(Chassis_Ctrl_Cmd_s *)CANCommGet(chasiss_can_comm);
#endif // CHASSIS_BOARD
if (chassis_cmd_recv.chassis_mode == CHASSIS_ZERO_FORCE)
{ // 如果出现重要模块离线或遥控器设置为急停,让电机停止
DJIMotorStop(motor_lf);
DJIMotorStop(motor_rf);
DJIMotorStop(motor_lb);
DJIMotorStop(motor_rb);
}
else
{ // 正常工作
DJIMotorEnable(motor_lf);
DJIMotorEnable(motor_rf);
DJIMotorEnable(motor_lb);
DJIMotorEnable(motor_rb);
}
// 根据控制模式设定旋转速度
switch (chassis_cmd_recv.chassis_mode)
{
case CHASSIS_NO_FOLLOW: // 底盘不旋转,但维持全向机动,一般用于调整云台姿态
chassis_cmd_recv.wz = 0;
break;
case CHASSIS_FOLLOW_GIMBAL_YAW: // 跟随云台,不单独设置pid,以误差角度平方为速度输出
2024-01-26 17:25:52 +08:00
chassis_cmd_recv.wz = 2.0f * chassis_cmd_recv.offset_angle * abs(chassis_cmd_recv.offset_angle);
2023-10-02 18:00:54 +08:00
break;
case CHASSIS_ROTATE: // 自旋,同时保持全向机动;当前wz维持定值,后续增加不规则的变速策略
2024-01-16 19:51:18 +08:00
chassis_cmd_recv.wz = 1600;
2023-10-02 18:00:54 +08:00
break;
default:
break;
}
// 根据云台和底盘的角度offset将控制量映射到底盘坐标系上
// 底盘逆时针旋转为角度正方向;云台命令的方向以云台指向的方向为x,采用右手系(x指向正北时y在正东)
static float sin_theta, cos_theta;
cos_theta = arm_cos_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
sin_theta = arm_sin_f32(chassis_cmd_recv.offset_angle * DEGREE_2_RAD);
chassis_vx = chassis_cmd_recv.vx * cos_theta - chassis_cmd_recv.vy * sin_theta;
chassis_vy = chassis_cmd_recv.vx * sin_theta + chassis_cmd_recv.vy * cos_theta;
// 根据控制模式进行正运动学解算,计算底盘输出
MecanumCalculate();
// 根据裁判系统的反馈数据和电容数据对输出限幅并设定闭环参考值
LimitChassisOutput();
// 根据电机的反馈速度和IMU(如果有)计算真实速度
EstimateSpeed();
2024-02-29 20:39:18 +08:00
//获取底盘功率
chassis_power = PowerMeterGet(power_meter);
2023-10-02 18:00:54 +08:00
// // 获取裁判系统数据 建议将裁判系统与底盘分离,所以此处数据应使用消息中心发送
// // 我方颜色id小于7是红色,大于7是蓝色,注意这里发送的是对方的颜色, 0:blue , 1:red
2024-01-27 10:41:36 +08:00
chassis_feedback_data.enemy_color = !referee_data->referee_id.Robot_Color;
2023-10-02 18:00:54 +08:00
// // 当前只做了17mm热量的数据获取,后续根据robot_def中的宏切换双枪管和英雄42mm的情况
// chassis_feedback_data.bullet_speed = referee_data->GameRobotState.shooter_id1_17mm_speed_limit;
// chassis_feedback_data.rest_heat = referee_data->PowerHeatData.shooter_heat0;
// 推送反馈消息
#ifdef ONE_BOARD
PubPushMessage(chassis_pub, (void *)&chassis_feedback_data);
#endif
#ifdef CHASSIS_BOARD
CANCommSend(chasiss_can_comm, (void *)&chassis_feedback_data);
#endif // CHASSIS_BOARD
}