200 lines
9.3 KiB
C
200 lines
9.3 KiB
C
#include "bsp_can.h"
|
|
#include "main.h"
|
|
#include "memory.h"
|
|
#include "stdlib.h"
|
|
#include "bsp_dwt.h"
|
|
#include "bsp_log.h"
|
|
|
|
/* can instance ptrs storage, used for recv callback */
|
|
// 在CAN产生接收中断会遍历数组,选出hcan和rxid与发生中断的实例相同的那个,调用其回调函数
|
|
// @todo: 后续为每个CAN总线单独添加一个can_instance指针数组,提高回调查找的性能
|
|
static CANInstance *can_instance[CAN_MX_REGISTER_CNT] = {NULL};
|
|
static uint8_t idx; // 全局CAN实例索引,每次有新的模块注册会自增
|
|
|
|
/* ----------------two static function called by CANRegister()-------------------- */
|
|
|
|
/**
|
|
* @brief 添加过滤器以实现对特定id的报文的接收,会被CANRegister()调用
|
|
* 给CAN添加过滤器后,BxCAN会根据接收到的报文的id进行消息过滤,符合规则的id会被填入FIFO触发中断
|
|
*
|
|
* @note f407的bxCAN有28个过滤器,这里将其配置为前14个过滤器给CAN1使用,后14个被CAN2使用
|
|
* 初始化时,奇数id的模块会被分配到FIFO0,偶数id的模块会被分配到FIFO1
|
|
* 注册到CAN1的模块使用过滤器0-13,CAN2使用过滤器14-27
|
|
*
|
|
* @attention 你不需要完全理解这个函数的作用,因为它主要是用于初始化,在开发过程中不需要关心底层的实现
|
|
* 享受开发的乐趣吧!如果你真的想知道这个函数在干什么,请联系作者或自己查阅资料(请直接查阅官方的reference manual)
|
|
*
|
|
* @param _instance can instance owned by specific module
|
|
*/
|
|
static void CANAddFilter(CANInstance *_instance)
|
|
{
|
|
CAN_FilterTypeDef can_filter_conf;
|
|
static uint8_t can1_filter_idx = 0, can2_filter_idx = 14; // 0-13给can1用,14-27给can2用
|
|
|
|
can_filter_conf.FilterMode = CAN_FILTERMODE_IDLIST; // 使用id list模式,即只有将rxid添加到过滤器中才会接收到,其他报文会被过滤
|
|
can_filter_conf.FilterScale = CAN_FILTERSCALE_16BIT; // 使用16位id模式,即只有低16位有效
|
|
can_filter_conf.FilterFIFOAssignment = (_instance->tx_id & 1) ? CAN_RX_FIFO0 : CAN_RX_FIFO1; // 奇数id的模块会被分配到FIFO0,偶数id的模块会被分配到FIFO1
|
|
can_filter_conf.SlaveStartFilterBank = 14; // 从第14个过滤器开始配置从机过滤器(在STM32的BxCAN控制器中CAN2是CAN1的从机)
|
|
can_filter_conf.FilterIdLow = _instance->rx_id << 5; // 过滤器寄存器的低16位,因为使用STDID,所以只有低11位有效,高5位要填0
|
|
can_filter_conf.FilterBank = _instance->can_handle == &hcan1 ? (can1_filter_idx++) : (can2_filter_idx++); // 根据can_handle判断是CAN1还是CAN2,然后自增
|
|
can_filter_conf.FilterActivation = CAN_FILTER_ENABLE; // 启用过滤器
|
|
|
|
HAL_CAN_ConfigFilter(_instance->can_handle, &can_filter_conf);
|
|
}
|
|
|
|
/**
|
|
* @brief 在第一个CAN实例初始化的时候会自动调用此函数,启动CAN服务
|
|
*
|
|
* @note 此函数会启动CAN1和CAN2,开启CAN1和CAN2的FIFO0 & FIFO1溢出通知
|
|
*
|
|
*/
|
|
static void CANServiceInit()
|
|
{
|
|
HAL_CAN_Start(&hcan1);
|
|
HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING);
|
|
HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO1_MSG_PENDING);
|
|
HAL_CAN_Start(&hcan2);
|
|
HAL_CAN_ActivateNotification(&hcan2, CAN_IT_RX_FIFO0_MSG_PENDING);
|
|
HAL_CAN_ActivateNotification(&hcan2, CAN_IT_RX_FIFO1_MSG_PENDING);
|
|
}
|
|
|
|
/* ----------------------- two extern callable function -----------------------*/
|
|
|
|
CANInstance *CANRegister(CAN_Init_Config_s *config)
|
|
{
|
|
if (!idx)
|
|
{
|
|
CANServiceInit(); // 第一次注册,先进行硬件初始化
|
|
LOGINFO("[bsp_can] CAN Service Init");
|
|
}
|
|
if (idx >= CAN_MX_REGISTER_CNT) // 超过最大实例数
|
|
{
|
|
while (1)
|
|
LOGERROR("[bsp_can] CAN instance exceeded MAX num, consider balance the load of CAN bus");
|
|
}
|
|
for (size_t i = 0; i < idx; i++)
|
|
{ // 重复注册 | id重复
|
|
if (can_instance[i]->rx_id == config->rx_id && can_instance[i]->can_handle == config->can_handle)
|
|
{
|
|
while (1)
|
|
LOGERROR("[}bsp_can] CAN id crash ,tx [%d] or rx [%d] already registered", &config->tx_id, &config->rx_id);
|
|
}
|
|
}
|
|
|
|
CANInstance *instance = (CANInstance *)malloc(sizeof(CANInstance)); // 分配空间
|
|
memset(instance, 0, sizeof(CANInstance)); // 分配的空间未必是0,所以要先清空
|
|
// 进行发送报文的配置
|
|
instance->txconf.StdId = config->tx_id; // 发送id
|
|
instance->txconf.IDE = CAN_ID_STD; // 使用标准id,扩展id则使用CAN_ID_EXT(目前没有需求)
|
|
instance->txconf.RTR = CAN_RTR_DATA; // 发送数据帧
|
|
instance->txconf.DLC = 0x08; // 默认发送长度为8
|
|
// 设置回调函数和接收发送id
|
|
instance->can_handle = config->can_handle;
|
|
instance->tx_id = config->tx_id; // 好像没用,可以删掉
|
|
instance->rx_id = config->rx_id;
|
|
instance->can_module_callback = config->can_module_callback;
|
|
instance->id = config->id;
|
|
|
|
CANAddFilter(instance); // 添加CAN过滤器规则
|
|
can_instance[idx++] = instance; // 将实例保存到can_instance中
|
|
|
|
return instance; // 返回can实例指针
|
|
}
|
|
|
|
/* @todo 目前似乎封装过度,应该添加一个指向tx_buff的指针,tx_buff不应该由CAN instance保存 */
|
|
/* 如果让CANinstance保存txbuff,会增加一次复制的开销 */
|
|
uint8_t CANTransmit(CANInstance *_instance, float timeout)
|
|
{
|
|
static uint32_t busy_count;
|
|
static volatile float wait_time __attribute__((unused)); // for cancel warning
|
|
float dwt_start = DWT_GetTimeline_ms();
|
|
while (HAL_CAN_GetTxMailboxesFreeLevel(_instance->can_handle) == 0) // 等待邮箱空闲
|
|
{
|
|
if (DWT_GetTimeline_ms() - dwt_start > timeout) // 超时
|
|
{
|
|
LOGWARNING("[bsp_can] CAN MAILbox full! failed to add msg to mailbox. Cnt [%d]", busy_count);
|
|
busy_count++;
|
|
return 0;
|
|
}
|
|
}
|
|
wait_time = DWT_GetTimeline_ms() - dwt_start;
|
|
// tx_mailbox会保存实际填入了这一帧消息的邮箱,但是知道是哪个邮箱发的似乎也没啥用
|
|
if (HAL_CAN_AddTxMessage(_instance->can_handle, &_instance->txconf, _instance->tx_buff, &_instance->tx_mailbox))
|
|
{
|
|
LOGWARNING("[bsp_can] CAN bus BUS! cnt:%d", busy_count);
|
|
busy_count++;
|
|
return 0;
|
|
}
|
|
return 1; // 发送成功
|
|
}
|
|
|
|
void CANSetDLC(CANInstance *_instance, uint8_t length)
|
|
{
|
|
// 发送长度错误!检查调用参数是否出错,或出现野指针/越界访问
|
|
if (length > 8 || length == 0) // 安全检查
|
|
while (1)
|
|
LOGERROR("[bsp_can] CAN DLC error! check your code or wild pointer");
|
|
_instance->txconf.DLC = length;
|
|
}
|
|
|
|
/* -----------------------belows are callback definitions--------------------------*/
|
|
|
|
/**
|
|
* @brief 此函数会被下面两个函数调用,用于处理FIFO0和FIFO1溢出中断(说明收到了新的数据)
|
|
* 所有的实例都会被遍历,找到can_handle和rx_id相等的实例时,调用该实例的回调函数
|
|
*
|
|
* @param _hcan
|
|
* @param fifox passed to HAL_CAN_GetRxMessage() to get mesg from a specific fifo
|
|
*/
|
|
static void CANFIFOxCallback(CAN_HandleTypeDef *_hcan, uint32_t fifox)
|
|
{
|
|
static CAN_RxHeaderTypeDef rxconf; // 同上
|
|
uint8_t can_rx_buff[8];
|
|
while (HAL_CAN_GetRxFifoFillLevel(_hcan, fifox)) // FIFO不为空,有可能在其他中断时有多帧数据进入
|
|
{
|
|
HAL_CAN_GetRxMessage(_hcan, fifox, &rxconf, can_rx_buff); // 从FIFO中获取数据
|
|
for (size_t i = 0; i < idx; ++i)
|
|
{ // 两者相等说明这是要找的实例
|
|
if (_hcan == can_instance[i]->can_handle && rxconf.StdId == can_instance[i]->rx_id)
|
|
{
|
|
if (can_instance[i]->can_module_callback != NULL) // 回调函数不为空就调用
|
|
{
|
|
can_instance[i]->rx_len = rxconf.DLC; // 保存接收到的数据长度
|
|
memcpy(can_instance[i]->rx_buff, can_rx_buff, rxconf.DLC); // 消息拷贝到对应实例
|
|
can_instance[i]->can_module_callback(can_instance[i]); // 触发回调进行数据解析和处理
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief 注意,STM32的两个CAN设备共享两个FIFO
|
|
* 下面两个函数是HAL库中的回调函数,他们被HAL声明为__weak,这里对他们进行重载(重写)
|
|
* 当FIFO0或FIFO1溢出时会调用这两个函数
|
|
*/
|
|
// 下面的函数会调用CANFIFOxCallback()来进一步处理来自特定CAN设备的消息
|
|
|
|
/**
|
|
* @brief rx fifo callback. Once FIFO_0 is full,this func would be called
|
|
*
|
|
* @param hcan CAN handle indicate which device the oddest mesg in FIFO_0 comes from
|
|
*/
|
|
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
|
|
{
|
|
CANFIFOxCallback(hcan, CAN_RX_FIFO0); // 调用我们自己写的函数来处理消息
|
|
}
|
|
|
|
/**
|
|
* @brief rx fifo callback. Once FIFO_1 is full,this func would be called
|
|
*
|
|
* @param hcan CAN handle indicate which device the oddest mesg in FIFO_1 comes from
|
|
*/
|
|
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
|
|
{
|
|
CANFIFOxCallback(hcan, CAN_RX_FIFO1); // 调用我们自己写的函数来处理消息
|
|
}
|
|
|
|
// 人工智能会毁灭人类吗?请在补全回答
|