NEW_Dart/NewBoomerang_test/modules/imu/ins_task.c

384 lines
13 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
******************************************************************************
* @file ins_task.c
* @author Wang Hongxi
* @author annotation and modificaiton by neozng
* @version V2.0.0
* @date 2022/2/23
* @brief
******************************************************************************
* @attention
*
******************************************************************************
*/
#include "ins_task.h"
#include "controller.h"
#include "QuaternionEKF.h"
#include "spi.h"
#include "tim.h"
#include "user_lib.h"
#include "general_def.h"
#include "master_process.h"
#include "vofa.h"
static INS_t INS;
static IMU_Param_t IMU_Param;
static PIDInstance TempCtrl = {0};
//const float xb[3] = {1, 0, 0};
//const float yb[3] = {0, 1, 0};
//const float zb[3] = {0, 0, 1};
const float xb[3] = {0, 0, 1};
const float yb[3] = {0, 1, 0};
const float zb[3] = {-1, 0, 0};
// 用于获取两次采样之间的时间间隔
static uint32_t INS_DWT_Count = 0;
static float dt = 0, t = 0;
static float RefTemp = 40; // 恒温设定温度
static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3]);
static void IMUPWMSet(uint16_t pwm)
{
__HAL_TIM_SetCompare(&htim10, TIM_CHANNEL_1, pwm);
}
/**
* @brief 温度控制
*
*/
static void IMU_Temperature_Ctrl(void)
{
PIDCalculate(&TempCtrl, BMI088.Temperature, RefTemp);
IMUPWMSet(float_constrain(float_rounding(TempCtrl.Output), 0, UINT32_MAX));
}
// 使用加速度计的数据初始化Roll和Pitch,而Yaw置0,这样可以避免在初始时候的姿态估计误差
static void InitQuaternion(float *init_q4)
{
float acc_init[3] = {0};
float gravity_norm[3] = {0, 0, 1}; // 导航系重力加速度矢量,归一化后为(0,0,1)
float axis_rot[3] = {0}; // 旋转轴
// 读取100次加速度计数据,取平均值作为初始值
for (uint8_t i = 0; i < 100; ++i)
{
BMI088_Read(&BMI088);
acc_init[X] += -BMI088.Accel[2];
acc_init[Y] += BMI088.Accel[Y];
acc_init[Z] += BMI088.Accel[0];
DWT_Delay(0.001);
}
for (uint8_t i = 0; i < 3; ++i)
acc_init[i] /= 100;
Norm3d(acc_init);
// 计算原始加速度矢量和导航系重力加速度矢量的夹角
float angle = acosf(Dot3d(acc_init, gravity_norm));
Cross3d(acc_init, gravity_norm, axis_rot);
Norm3d(axis_rot);
//q = cos (a/2) + i(x * sin(a/2)) + j(y * sin(a/2)) + k(z * sin(a/2))
//其中a表示旋转角度(x,y,z)表示旋转轴 计算由实际重力加速度方向(0,0,1)到当前加速度方向的旋转
init_q4[0] = cosf(angle / 2.0f);
for (uint8_t i = 0; i < 2; ++i)
init_q4[i + 1] = axis_rot[i] * sinf(angle / 2.0f); // 轴角公式,第三轴为0(没有z轴分量)
}
attitude_t *INS_Init(void)
{
if (!INS.init)
INS.init = 1;
else
return (attitude_t *)&INS.Gyro;
HAL_TIM_PWM_Start(&htim10, TIM_CHANNEL_1);
while (BMI088Init(&hspi1, 1) != BMI088_NO_ERROR)
;
IMU_Param.scale[X] = 1;
IMU_Param.scale[Y] = 1;
IMU_Param.scale[Z] = 1;
IMU_Param.Yaw = 0;
IMU_Param.Pitch = 0;
IMU_Param.Roll = 0;
IMU_Param.flag = 1;
float init_quaternion[4] = {0};
InitQuaternion(init_quaternion);//计算由实际重力加速度方向(0,0,1)到当前加速度方向的旋转
IMU_QuaternionEKF_Init(init_quaternion, 10, 0.001, 1000000, 1, 0);
// imu heat init
PID_Init_Config_s config = {.MaxOut = 2000,
.IntegralLimit = 300,
.DeadBand = 0,
.Kp = 1000,
.Ki = 20,
.Kd = 0,
.Improve = 0x01}; // enable integratiaon limit
PIDInit(&TempCtrl, &config);
// noise of accel is relatively big and of high freq,thus lpf is used
INS.AccelLPF = 0.0085;
DWT_GetDeltaT(&INS_DWT_Count);
return (attitude_t *)&INS.Gyro; // @todo: 这里偷懒了,不要这样做! 修改INT_t结构体可能会导致异常,待修复.
}
/* 注意以1kHz的频率运行此任务 */
void INS_Task(void)
{
static uint32_t count = 0;
const float gravity[3] = {0, 0, 9.81f};
dt = DWT_GetDeltaT(&INS_DWT_Count);
t += dt;
// ins update
if ((count % 1) == 0)
{
BMI088_Read(&BMI088);
INS.Accel[X] = -BMI088.Accel[2];
INS.Accel[Y] = BMI088.Accel[1];
INS.Accel[Z] = BMI088.Accel[0];
INS.Gyro[X] = -BMI088.Gyro[2];
INS.Gyro[Y] = BMI088.Gyro[1];
INS.Gyro[Z] = BMI088.Gyro[0];
// demo function,用于修正安装误差,可以不管,本demo暂时没用
IMU_Param_Correction(&IMU_Param, INS.Gyro, INS.Accel);
// 计算重力加速度矢量和b系的XY两轴的夹角,可用作功能扩展,本demo暂时没用
// INS.atanxz = -atan2f(INS.Accel[X], INS.Accel[Z]) * 180 / PI;
// INS.atanyz = atan2f(INS.Accel[Y], INS.Accel[Z]) * 180 / PI;
// 核心函数,EKF更新四元数
IMU_QuaternionEKF_Update(INS.Gyro[X], INS.Gyro[Y], INS.Gyro[Z], INS.Accel[X], INS.Accel[Y], INS.Accel[Z], dt);
memcpy(INS.q, QEKF_INS.q, sizeof(QEKF_INS.q));
// 机体系基向量转换到导航坐标系,本例选取惯性系为导航系
BodyFrameToEarthFrame(xb, INS.xn, INS.q);
BodyFrameToEarthFrame(yb, INS.yn, INS.q);
BodyFrameToEarthFrame(zb, INS.zn, INS.q);
// 将重力从导航坐标系n转换到机体系b,随后根据加速度计数据计算运动加速度
float gravity_b[3];
EarthFrameToBodyFrame(gravity, gravity_b, INS.q);
for (uint8_t i = 0; i < 3; ++i) // 同样过一个低通滤波
{
INS.MotionAccel_b[i] = (INS.Accel[i] - gravity_b[i]) * dt / (INS.AccelLPF + dt) + INS.MotionAccel_b[i] * INS.AccelLPF / (INS.AccelLPF + dt);
}
BodyFrameToEarthFrame(INS.MotionAccel_b, INS.MotionAccel_n, INS.q); // 转换回导航系n
INS.Yaw = QEKF_INS.Yaw;
INS.Pitch = QEKF_INS.Pitch;
INS.Roll = QEKF_INS.Roll;
// // get Yaw total, yaw数据可能会超过360,处理一下方便其他功能使用(如小陀螺)
// if (INS.Yaw - INS.YawAngleLast > 180.0f)
// {
// INS.YawRoundCount--;
// }
// else if (INS.Yaw - INS.YawAngleLast < -180.0f)
// {
// INS.YawRoundCount++;
// }
// INS.YawTotalAngle = 360.0f * INS.YawRoundCount + INS.Yaw;
INS.YawTotalAngle = QEKF_INS.YawTotalAngle;
// float vofa_send_data[9];
// vofa_send_data[0]=INS.Yaw;
// vofa_send_data[1]=INS.Pitch;
// vofa_send_data[2]=INS.Roll;
// vofa_send_data[3]=INS.Gyro[X];
// vofa_send_data[4]=INS.Gyro[Y];
// vofa_send_data[5]=INS.Gyro[Z];
// vofa_send_data[6]=BMI088.Accel[X];
// vofa_send_data[7]=BMI088.Accel[Y];
// vofa_send_data[8]=BMI088.Accel[Z];
// vofa_justfloat_output(vofa_send_data,36,&huart1);
VisionSetAltitude(INS.Yaw, INS.Pitch);
}
// temperature control
if ((count % 2) == 0)
{
// 500hz
IMU_Temperature_Ctrl();
}
if ((count++ % 1000) == 0)
{
// 1Hz 可以加入monitor函数,检查IMU是否正常运行/离线
}
}
/**
* @brief Transform 3dvector from BodyFrame to EarthFrame
* @param[1] vector in BodyFrame
* @param[2] vector in EarthFrame
* @param[3] quaternion
*/
void BodyFrameToEarthFrame(const float *vecBF, float *vecEF, float *q)
{
vecEF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecBF[0] +
(q[1] * q[2] - q[0] * q[3]) * vecBF[1] +
(q[1] * q[3] + q[0] * q[2]) * vecBF[2]);
vecEF[1] = 2.0f * ((q[1] * q[2] + q[0] * q[3]) * vecBF[0] +
(0.5f - q[1] * q[1] - q[3] * q[3]) * vecBF[1] +
(q[2] * q[3] - q[0] * q[1]) * vecBF[2]);
vecEF[2] = 2.0f * ((q[1] * q[3] - q[0] * q[2]) * vecBF[0] +
(q[2] * q[3] + q[0] * q[1]) * vecBF[1] +
(0.5f - q[1] * q[1] - q[2] * q[2]) * vecBF[2]);
}
/**
* @brief Transform 3dvector from EarthFrame to BodyFrame
* @param[1] vector in EarthFrame
* @param[2] vector in BodyFrame
* @param[3] quaternion
*/
void EarthFrameToBodyFrame(const float *vecEF, float *vecBF, float *q)
{
vecBF[0] = 2.0f * ((0.5f - q[2] * q[2] - q[3] * q[3]) * vecEF[0] +
(q[1] * q[2] + q[0] * q[3]) * vecEF[1] +
(q[1] * q[3] - q[0] * q[2]) * vecEF[2]);
vecBF[1] = 2.0f * ((q[1] * q[2] - q[0] * q[3]) * vecEF[0] +
(0.5f - q[1] * q[1] - q[3] * q[3]) * vecEF[1] +
(q[2] * q[3] + q[0] * q[1]) * vecEF[2]);
vecBF[2] = 2.0f * ((q[1] * q[3] + q[0] * q[2]) * vecEF[0] +
(q[2] * q[3] - q[0] * q[1]) * vecEF[1] +
(0.5f - q[1] * q[1] - q[2] * q[2]) * vecEF[2]);
}
/**
* @brief reserved.用于修正IMU安装误差与标度因数误差,即陀螺仪轴和云台轴的安装偏移
*
*
* @param param IMU参数
* @param gyro 角速度
* @param accel 加速度
*/
static void IMU_Param_Correction(IMU_Param_t *param, float gyro[3], float accel[3])
{
static float lastYawOffset, lastPitchOffset, lastRollOffset;
static float c_11, c_12, c_13, c_21, c_22, c_23, c_31, c_32, c_33;
float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll;
if (fabsf(param->Yaw - lastYawOffset) > 0.001f ||
fabsf(param->Pitch - lastPitchOffset) > 0.001f ||
fabsf(param->Roll - lastRollOffset) > 0.001f || param->flag)
{
cosYaw = arm_cos_f32(param->Yaw / 57.295779513f);
cosPitch = arm_cos_f32(param->Pitch / 57.295779513f);
cosRoll = arm_cos_f32(param->Roll / 57.295779513f);
sinYaw = arm_sin_f32(param->Yaw / 57.295779513f);
sinPitch = arm_sin_f32(param->Pitch / 57.295779513f);
sinRoll = arm_sin_f32(param->Roll / 57.295779513f);
// 1.yaw(alpha) 2.pitch(beta) 3.roll(gamma)
c_11 = cosYaw * cosRoll + sinYaw * sinPitch * sinRoll;
c_12 = cosPitch * sinYaw;
c_13 = cosYaw * sinRoll - cosRoll * sinYaw * sinPitch;
c_21 = cosYaw * sinPitch * sinRoll - cosRoll * sinYaw;
c_22 = cosYaw * cosPitch;
c_23 = -sinYaw * sinRoll - cosYaw * cosRoll * sinPitch;
c_31 = -cosPitch * sinRoll;
c_32 = sinPitch;
c_33 = cosPitch * cosRoll;
param->flag = 0;
}
float gyro_temp[3];
for (uint8_t i = 0; i < 3; ++i)
gyro_temp[i] = gyro[i] * param->scale[i];
gyro[X] = c_11 * gyro_temp[X] +
c_12 * gyro_temp[Y] +
c_13 * gyro_temp[Z];
gyro[Y] = c_21 * gyro_temp[X] +
c_22 * gyro_temp[Y] +
c_23 * gyro_temp[Z];
gyro[Z] = c_31 * gyro_temp[X] +
c_32 * gyro_temp[Y] +
c_33 * gyro_temp[Z];
float accel_temp[3];
for (uint8_t i = 0; i < 3; ++i)
accel_temp[i] = accel[i];
accel[X] = c_11 * accel_temp[X] +
c_12 * accel_temp[Y] +
c_13 * accel_temp[Z];
accel[Y] = c_21 * accel_temp[X] +
c_22 * accel_temp[Y] +
c_23 * accel_temp[Z];
accel[Z] = c_31 * accel_temp[X] +
c_32 * accel_temp[Y] +
c_33 * accel_temp[Z];
lastYawOffset = param->Yaw;
lastPitchOffset = param->Pitch;
lastRollOffset = param->Roll;
}
//------------------------------------functions below are not used in this demo-------------------------------------------------
//----------------------------------you can read them for learning or programming-----------------------------------------------
//----------------------------------they could also be helpful for further design-----------------------------------------------
/**
* @brief Update quaternion
*/
void QuaternionUpdate(float *q, float gx, float gy, float gz, float dt)
{
float qa, qb, qc;
gx *= 0.5f * dt;
gy *= 0.5f * dt;
gz *= 0.5f * dt;
qa = q[0];
qb = q[1];
qc = q[2];
q[0] += (-qb * gx - qc * gy - q[3] * gz);
q[1] += (qa * gx + qc * gz - q[3] * gy);
q[2] += (qa * gy - qb * gz + q[3] * gx);
q[3] += (qa * gz + qb * gy - qc * gx);
}
/**
* @brief Convert quaternion to eular angle
*/
void QuaternionToEularAngle(float *q, float *Yaw, float *Pitch, float *Roll)
{
*Yaw = atan2f(2.0f * (q[0] * q[3] + q[1] * q[2]), 2.0f * (q[0] * q[0] + q[1] * q[1]) - 1.0f) * 57.295779513f;
*Pitch = atan2f(2.0f * (q[0] * q[1] + q[2] * q[3]), 2.0f * (q[0] * q[0] + q[3] * q[3]) - 1.0f) * 57.295779513f;
*Roll = asinf(2.0f * (q[0] * q[2] - q[1] * q[3])) * 57.295779513f;
}
/**
* @brief Convert eular angle to quaternion
*/
void EularAngleToQuaternion(float Yaw, float Pitch, float Roll, float *q)
{
float cosPitch, cosYaw, cosRoll, sinPitch, sinYaw, sinRoll;
Yaw /= 57.295779513f;
Pitch /= 57.295779513f;
Roll /= 57.295779513f;
cosPitch = arm_cos_f32(Pitch / 2);
cosYaw = arm_cos_f32(Yaw / 2);
cosRoll = arm_cos_f32(Roll / 2);
sinPitch = arm_sin_f32(Pitch / 2);
sinYaw = arm_sin_f32(Yaw / 2);
sinRoll = arm_sin_f32(Roll / 2);
q[0] = cosPitch * cosRoll * cosYaw + sinPitch * sinRoll * sinYaw;
q[1] = sinPitch * cosRoll * cosYaw - cosPitch * sinRoll * sinYaw;
q[2] = sinPitch * cosRoll * sinYaw + cosPitch * sinRoll * cosYaw;
q[3] = cosPitch * cosRoll * sinYaw - sinPitch * sinRoll * cosYaw;
}